InTOR - Repository of the Institute “Torlak”
Institute of Virology, Vaccines and Sera “Torlak”
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   InTOR
  • Torlak
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   InTOR
  • Torlak
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of Enzyme-Linked Lectin Sorbent Assay and Flow Cytometry for Profiling Microbial Glycans

Thumbnail
2022
Dragačević2022.pdf (1.625Mb)
Authors
Dragačević, Luka
Lopandić, Zorana
Gavrović-Jankulović, Marija
Živković, Irena
Blagojević, Veljko
Polović, Natalija
Minić, Rajna
Article (Published version)
Metadata
Show full item record
Abstract
The surface of microorganisms is covered with carbohydrates, which makes them unique, self-sustaining glycan probes. Lectins are able to bind to these probes, and this interaction can be exploited for selecting microorganisms or novel lectins. To examine lectin-microorganism interactions, we have previously developed an enzyme-linked lectin sorbent assay (ELLSA) with whole bacterial cells. To further test the validity of this methodology, here we compare it with flow cytometry. For this purpose, we used biotinylated recombinantly produced lectin from Musa acuminata (BanLec), this lectin’s recombinantly produced chimera with green fluorescent protein (BanLec-eGFP) and a lectin from Ricinus communis (RCA120), both biotinylated and FITC labeled. Parallel testing showed equivalent results for the two methods, in terms of the presence or absence of binding, with signal intensity yielding high Pearson correlation coefficient of 0.8 for BanLec and 0.95 for RCA120. The ELLSA method demonstrate...d multiple advantages, such as reliability and convenience for high-throughput analysis; it also required less lectin and yielded more consistent results. As such, ELLSA proved to be a useful tool for profiling microbial glycan structures or testing novel lectins.

Keywords:
Glycosylation / Plant lectins / Microorganisms / Yeasts / Salmonella Lactobacillus
Source:
Applied Biochemistry and Biotechnology, 2022, 194, 2047-2060
Publisher:
  • Springer
Funding / projects:
  • Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant 451-03-9/2021-14

DOI: 10.1007/s12010-021-03772-w

WoS: 000741601700005

Scopus: 2-s2.0-85122876661
[ Google Scholar ]
1
URI
http://intor.torlakinstitut.com/handle/123456789/621
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Torlak
TY  - JOUR
AU  - Dragačević, Luka
AU  - Lopandić, Zorana
AU  - Gavrović-Jankulović, Marija
AU  - Živković, Irena
AU  - Blagojević, Veljko
AU  - Polović, Natalija
AU  - Minić, Rajna
PY  - 2022
UR  - http://intor.torlakinstitut.com/handle/123456789/621
AB  - The surface of microorganisms is covered with carbohydrates, which makes them unique, self-sustaining glycan probes. Lectins are able to bind to these probes, and this interaction can be exploited for selecting microorganisms or novel lectins. To examine lectin-microorganism interactions, we have previously developed an enzyme-linked lectin sorbent assay (ELLSA) with whole bacterial cells. To further test the validity of this methodology, here we compare it with flow cytometry. For this purpose, we used biotinylated recombinantly produced lectin from Musa acuminata (BanLec), this lectin’s recombinantly produced chimera with green fluorescent protein (BanLec-eGFP) and a lectin from Ricinus communis (RCA120), both biotinylated and FITC labeled. Parallel testing showed equivalent results for the two methods, in terms of the presence or absence of binding, with signal intensity yielding high Pearson correlation coefficient of 0.8 for BanLec and 0.95 for RCA120. The ELLSA method demonstrated multiple advantages, such as reliability and convenience for high-throughput analysis; it also required less lectin and yielded more consistent results. As such, ELLSA proved to be a useful tool for profiling microbial glycan structures or testing novel lectins.
PB  - Springer
T2  - Applied Biochemistry and Biotechnology
T1  - Comparison of Enzyme-Linked Lectin Sorbent Assay and Flow Cytometry for Profiling Microbial Glycans
EP  - 2060
SP  - 2047
VL  - 194
DO  - 10.1007/s12010-021-03772-w
ER  - 
@article{
author = "Dragačević, Luka and Lopandić, Zorana and Gavrović-Jankulović, Marija and Živković, Irena and Blagojević, Veljko and Polović, Natalija and Minić, Rajna",
year = "2022",
abstract = "The surface of microorganisms is covered with carbohydrates, which makes them unique, self-sustaining glycan probes. Lectins are able to bind to these probes, and this interaction can be exploited for selecting microorganisms or novel lectins. To examine lectin-microorganism interactions, we have previously developed an enzyme-linked lectin sorbent assay (ELLSA) with whole bacterial cells. To further test the validity of this methodology, here we compare it with flow cytometry. For this purpose, we used biotinylated recombinantly produced lectin from Musa acuminata (BanLec), this lectin’s recombinantly produced chimera with green fluorescent protein (BanLec-eGFP) and a lectin from Ricinus communis (RCA120), both biotinylated and FITC labeled. Parallel testing showed equivalent results for the two methods, in terms of the presence or absence of binding, with signal intensity yielding high Pearson correlation coefficient of 0.8 for BanLec and 0.95 for RCA120. The ELLSA method demonstrated multiple advantages, such as reliability and convenience for high-throughput analysis; it also required less lectin and yielded more consistent results. As such, ELLSA proved to be a useful tool for profiling microbial glycan structures or testing novel lectins.",
publisher = "Springer",
journal = "Applied Biochemistry and Biotechnology",
title = "Comparison of Enzyme-Linked Lectin Sorbent Assay and Flow Cytometry for Profiling Microbial Glycans",
pages = "2060-2047",
volume = "194",
doi = "10.1007/s12010-021-03772-w"
}
Dragačević, L., Lopandić, Z., Gavrović-Jankulović, M., Živković, I., Blagojević, V., Polović, N.,& Minić, R.. (2022). Comparison of Enzyme-Linked Lectin Sorbent Assay and Flow Cytometry for Profiling Microbial Glycans. in Applied Biochemistry and Biotechnology
Springer., 194, 2047-2060.
https://doi.org/10.1007/s12010-021-03772-w
Dragačević L, Lopandić Z, Gavrović-Jankulović M, Živković I, Blagojević V, Polović N, Minić R. Comparison of Enzyme-Linked Lectin Sorbent Assay and Flow Cytometry for Profiling Microbial Glycans. in Applied Biochemistry and Biotechnology. 2022;194:2047-2060.
doi:10.1007/s12010-021-03772-w .
Dragačević, Luka, Lopandić, Zorana, Gavrović-Jankulović, Marija, Živković, Irena, Blagojević, Veljko, Polović, Natalija, Minić, Rajna, "Comparison of Enzyme-Linked Lectin Sorbent Assay and Flow Cytometry for Profiling Microbial Glycans" in Applied Biochemistry and Biotechnology, 194 (2022):2047-2060,
https://doi.org/10.1007/s12010-021-03772-w . .

DSpace software copyright © 2002-2015  DuraSpace
About InTOR | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About InTOR | Send Feedback

OpenAIRERCUB