InTOR - Repository of the Institute “Torlak”
Institute of Virology, Vaccines and Sera “Torlak”
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   InTOR
  • Torlak
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   InTOR
  • Torlak
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Subpollen particles are rich carriers of major short ragweed allergens and NADH dehydrogenases: quantitative proteomic and allergomic study

Authorized Users Only
2017
Authors
Smiljanić, Katarina
Apostolović, Danijela
Trifunović, S.
Ognjenović, Jana
Perusko, M.
Mihajlović, Luka
Burazer, Lidija
van Hage, Marianne
Ćirković-Veličković, Tanja
Article (Published version)
Metadata
Show full item record
Abstract
Background: Short ragweed (Ambrosia artemisiifolia) allergies affect more than 36 million people annually. Ragweed pollen grains release subpollen particles (SPP) of respirable size upon hydration or a change in air electrical conditions. The aim of this study was to characterize the proteomes and allergomes of short ragweed SPP and total pollen protein extract (TOT), and compare their effects with those of standard aqueous pollen protein extract (APE) using sera from short ragweed pollen-sensitized patients. Methods: Quantitative 2D gel-based and shotgun proteomics, 1D and 2D immunoblotting, and quantitative ELISA were applied. Novel SPP extraction and preparation protocols enabled appropriate sample preparation and further downstream analysis by quantitative proteomics. Results: The SPP fraction contained the highest proportion (94%) of the allergome, with the largest quantities of the minor Amb a 4 and major Amb a 1 allergens, and as unique, NADH dehydrogenases. APE was the richest ...in Amb a 6, Amb a 5 and Amb a 3, and TOT fraction was the richest in the Amb a 8 allergens (89% and 83% of allergome, respectively). Allergenic potency correlated well among the three fractions tested, with 1D immunoblots demonstrating a slight predominance of IgE reactivity to SPP compared to TOT and APE. However, the strongest IgE binding in ELISA was noted against APE. New allergenic candidates, phosphoglycerate mutase and phosphoglucomutase, were identified in all the three pollen fractions. Enolase, UTP-glucose-1-phosphate uridylyltransferase and polygalacturonase were observed in SPP and TOT fractions as novel allergens of the short ragweed pollen, as previously described. Conclusion and Clinical Relevance: We demonstrated that the complete major (Amb a 1 and 11) and almost all minor (Amb a 3, 4, 5, 6, 8 and 9) short ragweed pollen allergen repertoire as well as NADH oxidases are present in SPP, highlighting an important role for SPP in allergic sensitization to short ragweed.

Keywords:
Ambrosia artemisiifolia / label-free quantification / new short ragweed allergens / pollen allergomes / subpollen particles
Source:
Clinical and Experimental Allergy, 2017, 47, 6, 815-828
Publisher:
  • Blackwell Publishing Ltd
Funding / projects:
  • Reinforcement of the Faculty of Chemistry, University of Belgrade, towards becoming a Center of Excellence in the region of WB for Molecular Biotechnology and Food research (EU-256716)
  • Molecular properties and modifications of some respiratory and nutritional allergens (RS-172024)
Note:
  • Peer reviewed version: http://intor.torlakinstitut.com/handle/123456789/610

DOI: 10.1111/cea.12874

ISSN: 0954-7894

PubMed: 28000951

WoS: 000402653100011

Scopus: 2-s2.0-85009944152
[ Google Scholar ]
20
15
URI
http://intor.torlakinstitut.com/handle/123456789/479
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Torlak
TY  - JOUR
AU  - Smiljanić, Katarina
AU  - Apostolović, Danijela
AU  - Trifunović, S.
AU  - Ognjenović, Jana
AU  - Perusko, M.
AU  - Mihajlović, Luka
AU  - Burazer, Lidija
AU  - van Hage, Marianne
AU  - Ćirković-Veličković, Tanja
PY  - 2017
UR  - http://intor.torlakinstitut.com/handle/123456789/479
AB  - Background: Short ragweed (Ambrosia artemisiifolia) allergies affect more than 36 million people annually. Ragweed pollen grains release subpollen particles (SPP) of respirable size upon hydration or a change in air electrical conditions. The aim of this study was to characterize the proteomes and allergomes of short ragweed SPP and total pollen protein extract (TOT), and compare their effects with those of standard aqueous pollen protein extract (APE) using sera from short ragweed pollen-sensitized patients. Methods: Quantitative 2D gel-based and shotgun proteomics, 1D and 2D immunoblotting, and quantitative ELISA were applied. Novel SPP extraction and preparation protocols enabled appropriate sample preparation and further downstream analysis by quantitative proteomics. Results: The SPP fraction contained the highest proportion (94%) of the allergome, with the largest quantities of the minor Amb a 4 and major Amb a 1 allergens, and as unique, NADH dehydrogenases. APE was the richest in Amb a 6, Amb a 5 and Amb a 3, and TOT fraction was the richest in the Amb a 8 allergens (89% and 83% of allergome, respectively). Allergenic potency correlated well among the three fractions tested, with 1D immunoblots demonstrating a slight predominance of IgE reactivity to SPP compared to TOT and APE. However, the strongest IgE binding in ELISA was noted against APE. New allergenic candidates, phosphoglycerate mutase and phosphoglucomutase, were identified in all the three pollen fractions. Enolase, UTP-glucose-1-phosphate uridylyltransferase and polygalacturonase were observed in SPP and TOT fractions as novel allergens of the short ragweed pollen, as previously described. Conclusion and Clinical Relevance: We demonstrated that the complete major (Amb a 1 and 11) and almost all minor (Amb a 3, 4, 5, 6, 8 and 9) short ragweed pollen allergen repertoire as well as NADH oxidases are present in SPP, highlighting an important role for SPP in allergic sensitization to short ragweed.
PB  - Blackwell Publishing Ltd
T2  - Clinical and Experimental Allergy
T1  - Subpollen particles are rich carriers of major short ragweed allergens and NADH dehydrogenases: quantitative proteomic and allergomic study
EP  - 828
IS  - 6
SP  - 815
VL  - 47
DO  - 10.1111/cea.12874
ER  - 
@article{
author = "Smiljanić, Katarina and Apostolović, Danijela and Trifunović, S. and Ognjenović, Jana and Perusko, M. and Mihajlović, Luka and Burazer, Lidija and van Hage, Marianne and Ćirković-Veličković, Tanja",
year = "2017",
abstract = "Background: Short ragweed (Ambrosia artemisiifolia) allergies affect more than 36 million people annually. Ragweed pollen grains release subpollen particles (SPP) of respirable size upon hydration or a change in air electrical conditions. The aim of this study was to characterize the proteomes and allergomes of short ragweed SPP and total pollen protein extract (TOT), and compare their effects with those of standard aqueous pollen protein extract (APE) using sera from short ragweed pollen-sensitized patients. Methods: Quantitative 2D gel-based and shotgun proteomics, 1D and 2D immunoblotting, and quantitative ELISA were applied. Novel SPP extraction and preparation protocols enabled appropriate sample preparation and further downstream analysis by quantitative proteomics. Results: The SPP fraction contained the highest proportion (94%) of the allergome, with the largest quantities of the minor Amb a 4 and major Amb a 1 allergens, and as unique, NADH dehydrogenases. APE was the richest in Amb a 6, Amb a 5 and Amb a 3, and TOT fraction was the richest in the Amb a 8 allergens (89% and 83% of allergome, respectively). Allergenic potency correlated well among the three fractions tested, with 1D immunoblots demonstrating a slight predominance of IgE reactivity to SPP compared to TOT and APE. However, the strongest IgE binding in ELISA was noted against APE. New allergenic candidates, phosphoglycerate mutase and phosphoglucomutase, were identified in all the three pollen fractions. Enolase, UTP-glucose-1-phosphate uridylyltransferase and polygalacturonase were observed in SPP and TOT fractions as novel allergens of the short ragweed pollen, as previously described. Conclusion and Clinical Relevance: We demonstrated that the complete major (Amb a 1 and 11) and almost all minor (Amb a 3, 4, 5, 6, 8 and 9) short ragweed pollen allergen repertoire as well as NADH oxidases are present in SPP, highlighting an important role for SPP in allergic sensitization to short ragweed.",
publisher = "Blackwell Publishing Ltd",
journal = "Clinical and Experimental Allergy",
title = "Subpollen particles are rich carriers of major short ragweed allergens and NADH dehydrogenases: quantitative proteomic and allergomic study",
pages = "828-815",
number = "6",
volume = "47",
doi = "10.1111/cea.12874"
}
Smiljanić, K., Apostolović, D., Trifunović, S., Ognjenović, J., Perusko, M., Mihajlović, L., Burazer, L., van Hage, M.,& Ćirković-Veličković, T.. (2017). Subpollen particles are rich carriers of major short ragweed allergens and NADH dehydrogenases: quantitative proteomic and allergomic study. in Clinical and Experimental Allergy
Blackwell Publishing Ltd., 47(6), 815-828.
https://doi.org/10.1111/cea.12874
Smiljanić K, Apostolović D, Trifunović S, Ognjenović J, Perusko M, Mihajlović L, Burazer L, van Hage M, Ćirković-Veličković T. Subpollen particles are rich carriers of major short ragweed allergens and NADH dehydrogenases: quantitative proteomic and allergomic study. in Clinical and Experimental Allergy. 2017;47(6):815-828.
doi:10.1111/cea.12874 .
Smiljanić, Katarina, Apostolović, Danijela, Trifunović, S., Ognjenović, Jana, Perusko, M., Mihajlović, Luka, Burazer, Lidija, van Hage, Marianne, Ćirković-Veličković, Tanja, "Subpollen particles are rich carriers of major short ragweed allergens and NADH dehydrogenases: quantitative proteomic and allergomic study" in Clinical and Experimental Allergy, 47, no. 6 (2017):815-828,
https://doi.org/10.1111/cea.12874 . .

DSpace software copyright © 2002-2015  DuraSpace
About InTOR | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About InTOR | Send Feedback

OpenAIRERCUB