InTOR - Repository of the Institute “Torlak”
Institute of Virology, Vaccines and Sera “Torlak”
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   InTOR
  • Torlak
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   InTOR
  • Torlak
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats

Authorized Users Only
2009
Authors
Leposavić, Gordana
Perišić, Milica
Kosec, Duško
Arsenović-Ranin, Nevena
Radojević, Katarina
Stojić-Vukanić, Zorica
Pilipović, Ivan
Article (Published version)
Metadata
Show full item record
Abstract
Exposure of female rodents to testosterone in the critical neonatal period produces defeminization/masculinization of the hypothalamo-pituitary-gonadal (HPG) axis, i.e. neonatal androgenization and postpones axis maturation. To address the hypothesis that HPG axis signaling is involved in the programming of thymic maturation/involution and sexual differentiation we studied the impact of neonatal androgenization on thymic cellularity, development of effector and regulatory T cells, and phenotypic characteristics of peripheral blood T lymphocytes in adult rats. A single injection of testosterome on postnatal day 2 postponed thymic maturation/involution as revealed by organ hypercellularity, increased cellularity of the most mature (CD4+CD8- and CD4-CD8+) TCR alpha beta(high) thymocyte and both recent thymic emigrant (RTE) subsets and caused phenotypic efeminization/masculinization of thymic (decreased CD4+CD8-TCR alpha beta(high)/CD4-CD8+TCR alpha beta(high) cell ratio) and peripheral bl...ood T-cell compartments (decreased CD4+RTE/CD8+RTE and CD4+/CD8+ cell ratio). In addition, neonatal androgenization increased the relative and absolute numbers of both CD4+CD25+Foxp3+ and natural killer (NK) regulatory T cells in peripheral blood. These findings, in conjunction with thymocyte overexpression of Thy-1 that is assumed to reduce negative selection affecting self-reactive cell generation, suggest a new relationship between self-reactive and regulatory T cells. In conclusion, our study provides additional evidence for a role of HPG signals (i.e. sex steroids and gonadotropins) in programming the kinetics of thymic maturation/involution and in establishing immunological sexual dimorphism. (C) 2008 Elsevier Inc. All rights reserved.

Keywords:
Neonatal androgenization / T-cell differentiation / Peripheral blood T lymphocytes / Recent thymic emigrants
Source:
Brain Behavior and Immunity, 2009, 23, 2, 294-304
Publisher:
  • Academic Press Inc Elsevier Science, San Diego
Funding / projects:
  • Neuroendokrina modulacija imunskog odgovora: uloga simpato-adrenomedularnog sistema (RS-145049)

DOI: 10.1016/j.bbi.2008.11.002

ISSN: 0889-1591

PubMed: 19028560

WoS: 000263134100019

Scopus: 2-s2.0-58749102933
[ Google Scholar ]
19
15
URI
http://intor.torlakinstitut.com/handle/123456789/289
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Torlak
TY  - JOUR
AU  - Leposavić, Gordana
AU  - Perišić, Milica
AU  - Kosec, Duško
AU  - Arsenović-Ranin, Nevena
AU  - Radojević, Katarina
AU  - Stojić-Vukanić, Zorica
AU  - Pilipović, Ivan
PY  - 2009
UR  - http://intor.torlakinstitut.com/handle/123456789/289
AB  - Exposure of female rodents to testosterone in the critical neonatal period produces defeminization/masculinization of the hypothalamo-pituitary-gonadal (HPG) axis, i.e. neonatal androgenization and postpones axis maturation. To address the hypothesis that HPG axis signaling is involved in the programming of thymic maturation/involution and sexual differentiation we studied the impact of neonatal androgenization on thymic cellularity, development of effector and regulatory T cells, and phenotypic characteristics of peripheral blood T lymphocytes in adult rats. A single injection of testosterome on postnatal day 2 postponed thymic maturation/involution as revealed by organ hypercellularity, increased cellularity of the most mature (CD4+CD8- and CD4-CD8+) TCR alpha beta(high) thymocyte and both recent thymic emigrant (RTE) subsets and caused phenotypic efeminization/masculinization of thymic (decreased CD4+CD8-TCR alpha beta(high)/CD4-CD8+TCR alpha beta(high) cell ratio) and peripheral blood T-cell compartments (decreased CD4+RTE/CD8+RTE and CD4+/CD8+ cell ratio). In addition, neonatal androgenization increased the relative and absolute numbers of both CD4+CD25+Foxp3+ and natural killer (NK) regulatory T cells in peripheral blood. These findings, in conjunction with thymocyte overexpression of Thy-1 that is assumed to reduce negative selection affecting self-reactive cell generation, suggest a new relationship between self-reactive and regulatory T cells. In conclusion, our study provides additional evidence for a role of HPG signals (i.e. sex steroids and gonadotropins) in programming the kinetics of thymic maturation/involution and in establishing immunological sexual dimorphism. (C) 2008 Elsevier Inc. All rights reserved.
PB  - Academic Press Inc Elsevier Science, San Diego
T2  - Brain Behavior and Immunity
T1  - Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats
EP  - 304
IS  - 2
SP  - 294
VL  - 23
DO  - 10.1016/j.bbi.2008.11.002
ER  - 
@article{
author = "Leposavić, Gordana and Perišić, Milica and Kosec, Duško and Arsenović-Ranin, Nevena and Radojević, Katarina and Stojić-Vukanić, Zorica and Pilipović, Ivan",
year = "2009",
abstract = "Exposure of female rodents to testosterone in the critical neonatal period produces defeminization/masculinization of the hypothalamo-pituitary-gonadal (HPG) axis, i.e. neonatal androgenization and postpones axis maturation. To address the hypothesis that HPG axis signaling is involved in the programming of thymic maturation/involution and sexual differentiation we studied the impact of neonatal androgenization on thymic cellularity, development of effector and regulatory T cells, and phenotypic characteristics of peripheral blood T lymphocytes in adult rats. A single injection of testosterome on postnatal day 2 postponed thymic maturation/involution as revealed by organ hypercellularity, increased cellularity of the most mature (CD4+CD8- and CD4-CD8+) TCR alpha beta(high) thymocyte and both recent thymic emigrant (RTE) subsets and caused phenotypic efeminization/masculinization of thymic (decreased CD4+CD8-TCR alpha beta(high)/CD4-CD8+TCR alpha beta(high) cell ratio) and peripheral blood T-cell compartments (decreased CD4+RTE/CD8+RTE and CD4+/CD8+ cell ratio). In addition, neonatal androgenization increased the relative and absolute numbers of both CD4+CD25+Foxp3+ and natural killer (NK) regulatory T cells in peripheral blood. These findings, in conjunction with thymocyte overexpression of Thy-1 that is assumed to reduce negative selection affecting self-reactive cell generation, suggest a new relationship between self-reactive and regulatory T cells. In conclusion, our study provides additional evidence for a role of HPG signals (i.e. sex steroids and gonadotropins) in programming the kinetics of thymic maturation/involution and in establishing immunological sexual dimorphism. (C) 2008 Elsevier Inc. All rights reserved.",
publisher = "Academic Press Inc Elsevier Science, San Diego",
journal = "Brain Behavior and Immunity",
title = "Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats",
pages = "304-294",
number = "2",
volume = "23",
doi = "10.1016/j.bbi.2008.11.002"
}
Leposavić, G., Perišić, M., Kosec, D., Arsenović-Ranin, N., Radojević, K., Stojić-Vukanić, Z.,& Pilipović, I.. (2009). Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats. in Brain Behavior and Immunity
Academic Press Inc Elsevier Science, San Diego., 23(2), 294-304.
https://doi.org/10.1016/j.bbi.2008.11.002
Leposavić G, Perišić M, Kosec D, Arsenović-Ranin N, Radojević K, Stojić-Vukanić Z, Pilipović I. Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats. in Brain Behavior and Immunity. 2009;23(2):294-304.
doi:10.1016/j.bbi.2008.11.002 .
Leposavić, Gordana, Perišić, Milica, Kosec, Duško, Arsenović-Ranin, Nevena, Radojević, Katarina, Stojić-Vukanić, Zorica, Pilipović, Ivan, "Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats" in Brain Behavior and Immunity, 23, no. 2 (2009):294-304,
https://doi.org/10.1016/j.bbi.2008.11.002 . .

DSpace software copyright © 2002-2015  DuraSpace
About InTOR | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About InTOR | Send Feedback

OpenAIRERCUB