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SAZETAK

Slobodni radikali se stvaraju kao uzgredni produkti mnogih fiziologkih
procesa u ¢elijama ili zadesno. Najveci bioloki znacaj imaju reaktivni
oblici kiseonika 1 azota. Ti molekuli mogu izazvati lan¢ane reakcije koje
prouzrokuju ostecenje ¢elijskih membrana, proteina i nukleinskih kise-
Iina. Da bi se kontrolisali njihovi efekti 1 odrzala redox homeostaza,
postoje brojni zadtimi antioksidativni mehanizmi. »Oksidativni stres«
predstavlja stanje u kome je naruSena redoks homeostaza, odnosno ba-
lans izmedu pro-oksidativnih i1 antioksidativnih supstanct. Oksidativii
stres moZe biti prouzrokovan aktivacijom endogenih mehanizama stva-
ranja slobodnih radikala ili dejstvom egzogenih faktora. Celijske reakcije
na povecanje koncentracije reaktivnih oblika kiseonika predstavijaju
»odgovor na oksidativni stres«. Ako se povecana koncentracija reaktiv-
nih oblika kiseonika odrzava uprkos aktivaciji antioksidativnih meha-
nizama, narusava se redox homeostaza i moze doci do pojave bolesti. U
ovom radu su prikazani glavni mehanizmi stvaranja slobodnih radikala
koji vode nastanku oksidativnog stresa uklju¢enog u proces starenja i
nastanak mnogobrojnih 1 raznovrsnih bolesti. S obzirom na ulogu imun-
skog sistema u njihovoj patogenezi, posebno je prikazan uticaj oksida-
tivnog stresa na urodene 1 steCene imunske mehanizme, kao 1 uticaj
slobodnih radikala na aktivaciju i preZivlijavanje T limfocita.

Klju¢ne reci: slobodni radikali, oksidativni stres, imunski sistern, T
hmfocm

FREE RADICALS ORIGIN

Free radical formation is a byproduct of many normal cel-
lular reactions in the body, including energy generation,
breakdown of lipids and proteins, and inflammatory pro-
cesses (1). Exogenous sources of free radicals include to-
bacco smoke, certain pollutants and organic solvents, hype-
roxic environments, pesticides and radiation. Biologically,
most relevant free radicals are reactive oxygen species
(ROS) superoxide radical (O2¢-) generated during auto-
oxidation in mitochondria or by enzymes in cytoplasm
(such as xantine oxidase or cytochrome P-450), hydroxyl
radical (OH*) obtained by the hydrolisis of water and ni-
tric oxide (NO) or their derivatives, peroxnitrite anion
(ONOO-), as well as NO, * and NO;~ (2). Although the
hydrogen peroxide (H,0,) generated by the enzyme supe-
roxide dismutase or directly by oxidases in peroxisomes is
not free radical, it is highly reactive oxygen species.

Normal energy metabolism in aerobic organisms is associ-
ated with the generation of highly reactive oxygen mole-
cules (3). Practically, all cells and tissues convert continu-
ously a small proportion of oxygen (approximately 2-5% of
oxygen consumption) by electron transport chain (ETC)

into reactive oxygen molecules in the mitochondrial matrix
(4). Beside their production in oxygen biochemistry, these

molecules are produced by the cell as signaling molecules in

response to extracellular stimuli (5-7).
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ABSTRACT

Free radicals are generated as the byproducts of many physiological
cellular reactions or accidentally. Biologically, the most relevant free
radicals are highly reactive oxygen and nitric molecules. These mole-
cules can establish chain reactions causing damage of cell mem-
branes, proteins and nucleic acids. Numerous antioxidative mecha-
nisms exist in order to control their effects and maintain redox
homeostasis. The situation in which the cellular redox homoeostasis is
altered, ie. the balance between pro-oxidants and antioxidants, is
known as the “oxidative stress”. An oxidative stress may be induced by
the activation of endogenous generating systems or by conditions gen-
erated by environmental factors. The response to increased levels of
ROS is known as "oxidative stress response”. In cases of persistently
high ROS levels the loss of homeostasis might be developed which
could result in pathological conditions. In this study, we rewiev the
main mechanisms that generate free radicals and lead to oxidative
stress conditions included in aging and pathogenesis of many different
disorders. Because of the involvement of the immune systern in many of
these diseases, a particular attention was focused on oxidative stress
influence on both natural and acquired immunity, with the special
emphasis on free radical influence on T cell activation and survival.
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The main source of the free radical NO in mammalian
cells is the enzymatic oxidation of L-arginine by NO
synthases (8). NO generated by these enzymes has been
established as signaling molecule in the regulation of key
functions in the immune, cardiovascular and nervous
systems (9, 10).

Higher organisms developed mechanisms for the advan-
tageous use of free radicals or their derivatives as well as
mechanisms that suppress their potentially dangerously
interaction with biomolecules (4). Antioxidants, like en-
zymes (11, 12) superoxide dismutase (SOD), catalase
and glutathione peroxidase (GPx), as well as nonenzymic
compounds (13, 14) such as a-tocopherol (vitamin E),
B-carotene, ascorbic acid (vitamin C), and glutathione,
are substances that are able, at relatively low concentra-
tions, to significantly delay or inhibit oxidation of sub-
strates in the presence of free radicals or their derivatives
(15).

Nevertheless, at moderate concentrations, NO and reac-
tive oxygen species (ROS) play an important role as regu-
latory mediators in signaling processes (16), at high con-
centrations these molecules are hazardous for living
organisms and could damage all major cellular constitu-
ents. That is the reason why, under normal physiological
conditions, these molecules are generated and main-
tained at a relatively high steady-state level (17, 18). This
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balance could be disturbed ecither by an increase in ROS
concentrations or by means of the decrease in the activity
of one or more antioxidant systems.

OXIDATIVE STRESS GENERATION

The term “oxidative stress” is commonly used to designate

a situation in which the cellular redox homeostasis, i.e. the

balance between pro-oxidants and antioxidants, is altered

because of excessive production of ROS and/or impair-
ment of cellular antioxidant mechanisms (19, 20). In anal-

ogy to oxidative stress, the term “nitrosative stress” was

coined for the excessive or deregulated formation of NO

and NO-derived reactive nitrogen species (RNS) (21).

An oxidative stress may be induced by the activation of
endogenous generating systems or by conditions gener-
ated by environmental factors. The response to increased
levels of ROS is known as “oxidative stress response.” To
cope with oxidative insult, the cell has developed numer-
ous defense strategies, at the level of oxidative damage re-
pair and ROS scavenging mechanisms (22-24). If the ini-
tial increase in ROS is relatively small, the antioxidative
response may be sufficient to compensate for the increase
in ROS and this response allows cells and tissues to main-
tain redox homeostasis. Under certain conditions, how-
ever, ROS production is increased more strongly and per-
sistently, and the antioxidative response may not -be
sufficient to reset the system to the original level of redox
homeostasis. In such cases, the system may still reach an
equilibrium, but the resultmg quasi-stable state is associ-
ated with higher ROS concentrations. In more extreme
cases of persistently high ROS levels chronic shift in the
level of homeostasis or loss of homeostasis may develop.
In these cases, the pathological conditions may result
from both the damaging effects of ROS and ROS- -medi-
ated changes in gene expression.

OXIDATIVE STRESS - INDUCED MOLECULAR
DAMAGE

ngh ROS level is hazardous because it produces exten-
sive oxidative damage of membrane lipids (25), DNA
molecules (26) and proteins (27) as well as pcromdauon
of lipoproteins. The macromolecular damages (4) such as
oxidation and decomposition of lipids, single- and dou-
ble DNA-strand breaks, DNA-protein and protein-pro-
tein cross-linking, and protein fragmentation, result in
the formation of dangerous products such as hydrope-
roxides, alkyl radicals, cyclic endoperoxides, and alde-
hydes (28). The result of these changes could be distur-
bance in protein synthesis, decreased enzyme activity and
progressive impairment of the functions of mitochondria
and other organelles (26). In proliferating cells, oxidant-
-induced damage does not accumulate because the pro-
cess of cell division dilutes damaged structures (29, 30),
but in postmitotic cells the damage is being accumulated.
Both proliferating and postmitotic cells can, however, re-
new themselves by degrading defective macromolecules
and organelles. Mitochondria are the major intracellular
source of ROS (17, 26, 31) and the main target for free
radical attack. Due to the fact that mitochondria possess
their own genome, the mitochondrial DNA (mtDNA)

that encodes proteins essential for acrobic respiration is

highly susceptible to mutagenic insults. Oxidative dam-
age of mtDNA occurs at a frequency approximately 20

times greater than for nuclear DNA (32, 33). Mitochon-
dria are not fully competent in DNA repairing of various

types of damage caused by ROS and free radicals because

nucleotide excision repair does not exists in their DNA

repair mechanism.

OXIDATIVE STRESS IN AGING AND DISEASES

The widely popular free radical theory of aging (34)

states that the age-related degenerative process is to a
large extent the consequence of free radical damage. The-
re are various indirect manifestations of oxidative stress in

old age, including DNA oxidation, protein oxidation,
lipid peroxidation and a shift in the redox states of
thiol/disulfide redox couples (26, 35, 36). It is generally

accepted that accumulation of mutated mtDNA is a con-
tributory factor for the age-dependent decline of the respi-
ratory function, especially in postmitotic cells (31, 37,
38). Mitochondria undergo gradual structural alterations

associated with decreased capacity to produce energy
(39-41). In the scenario of a “vicious cycle” disturbances

in protein synthesis and decreased enzyme activity cause

the progressive impairment of the functions of mitochon-
dria and other organelles (26). It was shown that telo-
mere shortening, which characterize aging process, is

induced by oxidative stress conditions (42, 43).

Excessive ROS production has been implicated in the
pathogenesis of atherosclerosis (44, 45), hypertension
(46, 47), diabetes mellitus (48, 49), inflammatory auto-
immune diseases (50, 51), sepsis (52), ischemia-reper-
fusion injury and carcinogenesis.
These diseases could be distributed into two major cate-
gories (4). In the first category of diseases, such as diabe-
tes mellitus and cancer, there is a pro-oxidative shift in the
systemic thiol/disulfide redox state and impaired glucose
clearance, indicating that skeletal muscle mitochondria
may be the major site of elevated ROS production (48).
These conditions designated as “mitochondrial oxidative
stress” (4) are typically associated with skeletal muscle
wasting. Additionally, ROS are potential carcinogens as
it is well known that they facilitate mutagenesis, tumor
promotion, and progression (53-56).
The second category of disease is associated with an exces-
sive stimulation of NAD(P)H oxidase activity by cyto-
kines or other agents. In this case oxidative stress is the re-
sult of “inflammatory oxidative conditions” (4). Increased
ROS levels or changes in intracellular glutathione levels in
“inflammatory oxidative stress” could be produced by dys-
regulation of signal cascades and/or gene expression of cell
adhesion molecules (57-60).

Ischemia and reperfusion can lead to tissue injury and seri-
ous complications in organ transplantation (61), myocar-
dial infarction (62, 63), and stroke (64- 67) A disturbed
oxidative/antioxidative balance is present in human myo-
cardial reperfusion injury (68).

Nitrosative insult may occur # pive in pathologles associ-
ated with inflammatory processes, neurotoxicity and
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ischemia (69, 70) as well as during neurotransmission
(71).

OXIDATIVE STRESS AND THE IMMUNE SYSTEM

Oxygen-derived free radicals are important in both natural
and acquired immunity (72). Phagocytosis by neutrophils
or macrophages stimulates various cellular processes in-
cluding the “respiratory burst” whereby increased cellular
oxygen uptake results in the production of potent oxidant
agents. There is evidence that the intracellular redox state
modulates the immunological functions of macrophages.
The balance between “reductive” and “oxidative” macro-
phages regulates the ratio of helper T cells of type 1 versus
type 2 (Th1/Th2) (73).

The oxidative stress may influence acquired immunity by
influence on T cell activation (acting on gene expression
of various cytokines, chemokines, and cell adhesion mole-
cules) and survival (by regulating apoptosis). The activa-
tion of T lymphocytes is strongly enhanced by ROS (74).
Superoxide and/or physiologically relevant concentrati-
ons of H,0O, were shown to augment the production of
interleukin-2 (75, 76). Besides, low micromolar concen-
trations of H,O, were shown to induce the expression of
the interleukin-2 receptor (76). Exposure of T lympho-
cytes to physiologically relevant concentrations of envi-
ronmental ROS or to some moderate inducers of oxida-
tive stress does not bypass the requirement for signaling
initiated by specific cell membrane receptors, and can am-
plify signaling cascades after relatively weak receptor stim-
ulation. (74). This finding supports the activation of im-
mune responses by small concentrations of antigen (77).

On the other hand, the activation increases the amount of
ROS in T cells (78-80), but it is unclear how these ROS
are produced. T cells lack the conventional NADPH oxi-
dase enzymes used by granulocytes, but other mechanisms
for producing ROS might be included. Strong activation
of T cells causes a significant decrease in intracellular
glutathione levels and the endogenous production of hy-
drogen peroxide (76). Although under most circumsta-
nces the ROS are produced by the T cells themselves (78,
79, 80), the rapid increase in ROS level detected in T cells
within 15 minutes after activation (80) indicates that by-
stander neutrophils might be the source of the increased
ROS levels in activated T cells. In this instance, it is postu-
lated that activated neutrophils produce the ROS which
then diffuse into neighboring T cells (81).

Despite the fact that very little is known about the molec-
ular events that lead to ROS production within T cells,
several studies have shown that activated T cells could be

killed by ROS (79, 80). Besides ROS-induced, NO-de-
pendent apoptosis has been observed (82). There are

some contradictory results indicating that influence on

apoptotic process depends on NO concentrations. It was

shown that the low concentrations of NO could provide

protection from apoptotic cell death by inhibiting certain

caspases (83, 84).

The studies performed with primary T cells indicate that

the formation of intracellular ROS regulates activation-in-
duced T-cell apoptosis (85), therefore suggesting that

intracellular ROS could play a role in peripheral T-cell ho-
mecostasis (79, 86). Apoptosis of activated T cells can be

inhibited by culture with the antioxidant (79). Red blood

cells inhibit T-cell apoptosis (85) and protect T cells from

activation-induced cell death, at least in part by reducing

the pro-oxidant state. Recent studies have identified the

molecular details of this apoptotic process that operate in

vivo (87). It is now becoming clear that two separate

pathways — activation-induced cell death (AICD) and ac-
tivated T cell-autonomous death (ACAD) — control the

fate of antigen-specific T cells. One of these pathways,
AICD, is driven by signals delivered exogenously to the

cell. The other pathway, ACAD, is driven by signals that

are intrinsic to the activated T cell. Interestingly, reactive

oxygen species (ROS) can control both pathways thro-
ugh reciprocal modulation of the main effector molecules

FasL. and Bcl-2. Engagement of the TCR increases FasL

expression on T cells (88). Although both superoxide

and H,0O, were produced following TCR stimulation, it

was suggested that superoxide and not H,O, was respon-
sible for upregulation of FasL (80). Several experiments

suggest that ACAD is controlled by various members of
the Bcl-2 family of proteins. This family consists of pro-
and antiapoptotic members that control the fate of cells

by protection or destruction of mitochondria (89). How-
ever, some authors observed membrane changes typical

of apoptosis in the absence of ROS (90, 91), indicating

that pro-oxidative conditions are not a general prerequi-
site for apoptotic cell death. Nevertheless, high ROS con-
centrations induce apoptotic cell death in various cell

types (92, 93), suggesting that ROS contribute to cell

death whenever they are generated in the context of the

apoptotic process.

In addition, an increase in cellular ROS production in

apoptotic processes (4) is often observed. The ROS gen-
eration and subsequent oxidative stress are implicated as

unavoidable byproduct of the apoptotic execution pro-
cess (94). However, some authors found that triggering

of the Fas receptor does not induce ROS production

(95).

Inappropriate initiation of apoptosis has been proposed to

underlie the progressive neuronal attrition associated with

various neurodegenerative diseases (96) such as Alzhei-
mer’s disease (97-99), Parkinson’s disease (100, 101), and

other neurological disorders that are characterized by the

gradual loss of specific populations of neurons (96), as

well in some autoimmune neurological diseases such as

Guillain-Barré syndrome, demyelinating polyneuropathy,
and motoneuron disease (96). Besides, the oxidative

and/or nitrosative stress, by affecting numerous molecules

in different tissue could be included in the pathogenesis of
many other pathological conditions or diseases.

CONCLUSIONS

ROS and NO are proving to be ubiquitous effectors of
physiological function in most cell types and organ sys-
tems. New tools are rapidly evolving to measure ROS
and NO in cellular systems, to assess redox effects on regu-
latory proteins, and to modulate ROS and NO activities
experimentally. Final understanding how modulation of
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the redox-sensitive signaling process may be used to spe-
cifically alter the expression of genes involved in the
pathogenesis of a variety of diseases will encourage the ex-
ploration of novel treatment modalities targeting these
redox-sensitive pathways.
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