Molekularni mehanizmi transdukcije hormonskih signala: Biološki markeri modifikacije i integracije signalnih puteva u fiziološkim i patofiziološkim stanjima

Link to this page

info:eu-repo/grantAgreement/MESTD/MPN2006-2010/143030/RS//

Molekularni mehanizmi transdukcije hormonskih signala: Biološki markeri modifikacije i integracije signalnih puteva u fiziološkim i patofiziološkim stanjima (en)
Молекуларни механизми трансдукције хормонских сигнала: Биолошки маркери модификације и интеграције сигналних путева у физиолошким и патофизиолошким стањима (sr)
Molekularni mehanizmi transdukcije hormonskih signala: Biološki markeri modifikacije i integracije signalnih puteva u fiziološkim i patofiziološkim stanjima (sr_RS)
Authors

Publications

A novel hypothesis regarding the possible involvement of cytosolic phospholipase 2 in insulin-stimulated proliferation of vascular smooth muscle cells

Isenovic, Esma R.; Fretaud, Maxence; Dobutović, Branislava; Sudar, Emina; Smiljanić, Katarina; Zarić, Božidarka L.; Trpkovic, Andreja; Marche, Pierre

(Academic Press Ltd- Elsevier Science Ltd, London, 2009)

TY  - JOUR
AU  - Isenovic, Esma R.
AU  - Fretaud, Maxence
AU  - Dobutović, Branislava
AU  - Sudar, Emina
AU  - Smiljanić, Katarina
AU  - Zarić, Božidarka L.
AU  - Trpkovic, Andreja
AU  - Marche, Pierre
PY  - 2009
UR  - http://intor.torlakinstitut.com/handle/123456789/754
AB  - Insulin (INS) via INS receptor acts as a mitogen in vascular smooth muscle cells (VSMCs) through stimulation of multiple signaling mechanisms, including p42/44 mitogen-activated protein kinase (ERK1/2) and phosphatidyl inositol-3 kinase (PI3K). In addition, cytosolic phospholipase 2 (cPLA(2)) is linked to VSMCs proliferation. However, the upstream mechanisms responsible for activation of cPLA(2) are not well defined. Therefore, this investigation used primary cultured rat VSMCs to examine the role of PI3K and ERK1/2 in the INS-dependent phosphorylation of cPLA(2) and proliferation induced by INS. Exposure of VSMCs to INS (100 nM) for 10 min increased the phosphorylation of cPLA(2) by 1.5-fold (p  lt  0.01), which was blocked by the cPLA(2) inhibitor MAFP (10 mu M; 15 min). Similarly, the PI3K inhibitor LY294002 (10 mu M; 15 min) and ERK1/2 inhibitor PD98059 (20 mu M; 15 min) abolished the INS-mediated increase in cPLA(2) phosphorylation by 59% (p  lt  0.001), and by 75% (p  lt  0.001), respectively. Further, inhibition of cPLA2 with cPLA2 inhibitor MAFP abolished the INS-stimulated ERK1/2 phosphorylation by 65% (p  lt  0.01). Incubation of rat VSMCs with INS resulted in an increase of VSMCs proliferation by 85% (p  lt  0.001). The effect of INS on VSMCs proliferation was significantly (p  lt  0.01) reduced by pretreatment with MAFP. Thus, we hypothesized that INS stimulates VSMCs proliferation via a mechanism involving the PI3K-dependent activation of cPLA(2) and release of arachidonic acid (AA), which activates ERK1/2 and further amplifies cPLA(2) activity. (C) 2009 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
PB  - Academic Press Ltd- Elsevier Science Ltd, London
T2  - Cell Biology International
T1  - A novel hypothesis regarding the possible involvement of cytosolic phospholipase 2 in insulin-stimulated proliferation of vascular smooth muscle cells
EP  - 392
IS  - 3
SP  - 386
VL  - 33
DO  - 10.1016/j.cellbi.2009.01.010
ER  - 
@article{
author = "Isenovic, Esma R. and Fretaud, Maxence and Dobutović, Branislava and Sudar, Emina and Smiljanić, Katarina and Zarić, Božidarka L. and Trpkovic, Andreja and Marche, Pierre",
year = "2009",
abstract = "Insulin (INS) via INS receptor acts as a mitogen in vascular smooth muscle cells (VSMCs) through stimulation of multiple signaling mechanisms, including p42/44 mitogen-activated protein kinase (ERK1/2) and phosphatidyl inositol-3 kinase (PI3K). In addition, cytosolic phospholipase 2 (cPLA(2)) is linked to VSMCs proliferation. However, the upstream mechanisms responsible for activation of cPLA(2) are not well defined. Therefore, this investigation used primary cultured rat VSMCs to examine the role of PI3K and ERK1/2 in the INS-dependent phosphorylation of cPLA(2) and proliferation induced by INS. Exposure of VSMCs to INS (100 nM) for 10 min increased the phosphorylation of cPLA(2) by 1.5-fold (p  lt  0.01), which was blocked by the cPLA(2) inhibitor MAFP (10 mu M; 15 min). Similarly, the PI3K inhibitor LY294002 (10 mu M; 15 min) and ERK1/2 inhibitor PD98059 (20 mu M; 15 min) abolished the INS-mediated increase in cPLA(2) phosphorylation by 59% (p  lt  0.001), and by 75% (p  lt  0.001), respectively. Further, inhibition of cPLA2 with cPLA2 inhibitor MAFP abolished the INS-stimulated ERK1/2 phosphorylation by 65% (p  lt  0.01). Incubation of rat VSMCs with INS resulted in an increase of VSMCs proliferation by 85% (p  lt  0.001). The effect of INS on VSMCs proliferation was significantly (p  lt  0.01) reduced by pretreatment with MAFP. Thus, we hypothesized that INS stimulates VSMCs proliferation via a mechanism involving the PI3K-dependent activation of cPLA(2) and release of arachidonic acid (AA), which activates ERK1/2 and further amplifies cPLA(2) activity. (C) 2009 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.",
publisher = "Academic Press Ltd- Elsevier Science Ltd, London",
journal = "Cell Biology International",
title = "A novel hypothesis regarding the possible involvement of cytosolic phospholipase 2 in insulin-stimulated proliferation of vascular smooth muscle cells",
pages = "392-386",
number = "3",
volume = "33",
doi = "10.1016/j.cellbi.2009.01.010"
}
Isenovic, E. R., Fretaud, M., Dobutović, B., Sudar, E., Smiljanić, K., Zarić, B. L., Trpkovic, A.,& Marche, P.. (2009). A novel hypothesis regarding the possible involvement of cytosolic phospholipase 2 in insulin-stimulated proliferation of vascular smooth muscle cells. in Cell Biology International
Academic Press Ltd- Elsevier Science Ltd, London., 33(3), 386-392.
https://doi.org/10.1016/j.cellbi.2009.01.010
Isenovic ER, Fretaud M, Dobutović B, Sudar E, Smiljanić K, Zarić BL, Trpkovic A, Marche P. A novel hypothesis regarding the possible involvement of cytosolic phospholipase 2 in insulin-stimulated proliferation of vascular smooth muscle cells. in Cell Biology International. 2009;33(3):386-392.
doi:10.1016/j.cellbi.2009.01.010 .
Isenovic, Esma R., Fretaud, Maxence, Dobutović, Branislava, Sudar, Emina, Smiljanić, Katarina, Zarić, Božidarka L., Trpkovic, Andreja, Marche, Pierre, "A novel hypothesis regarding the possible involvement of cytosolic phospholipase 2 in insulin-stimulated proliferation of vascular smooth muscle cells" in Cell Biology International, 33, no. 3 (2009):386-392,
https://doi.org/10.1016/j.cellbi.2009.01.010 . .
6
4
6