Swedish Asthma and Allergy Association's Research Foundation

Link to this page

Swedish Asthma and Allergy Association's Research Foundation

Authors

Publications

Digestomics of Cow's Milk: Short Digestion-Resistant Peptides of Casein Form Functional Complexes by Aggregation

Radosavljević, Jelena; Apostolović, Danijela; Mihailović, Jelena; Atanasković-Marković, Marina; Burazer, Lidija; van Hage, Marianne; Ćirković-Veličković, Tanja

(MDPI, Basel, 2020)

TY  - JOUR
AU  - Radosavljević, Jelena
AU  - Apostolović, Danijela
AU  - Mihailović, Jelena
AU  - Atanasković-Marković, Marina
AU  - Burazer, Lidija
AU  - van Hage, Marianne
AU  - Ćirković-Veličković, Tanja
PY  - 2020
UR  - http://intor.torlakinstitut.com/handle/123456789/547
AB  - The aim of this study was to identify short digestion-resistant peptides (SDRPs) released by pepsin digestion of the whole cow's milk and examine their IgE reactivity and allergenicity. Raw milk was subjected to simulated gastric digestion. SDRPs were fractionated from the digests and identified by MS. Milk SDRPs were evaluated for aggregability, propensity to compete for IgE binding with individual milk allergens, and ability to bind IgG4 from allergic and milk-tolerant individuals. The majority of milk SDRPs originated from caseins (97% of peptides) and overlapped with the known IgE epitopes of cow's milk allergens. SDRPs competed with milk proteins for binding to human IgE and readily formed aggregates. The average peptide length was 10.6 +/- 3.5 amino acids. The ability to provoke allergenic in vivo responses was confirmed by skin-prick testing (SPT) in five milk-allergic subjects. This was attributed to the peptide ability to aggregate into non-covalent complexes. SDRPs are able to induce response in SPT, but only in 50% of the sera SDRPs were able to inhibit IgG4 binding to caseins. Hence, SDRPs corresponding to the mainly continuous epitopes of milk proteins induce allergenic in vivo responses in milk-allergic subjects due to aggregation.
PB  - MDPI, Basel
T2  - Foods
T1  - Digestomics of Cow's Milk: Short Digestion-Resistant Peptides of Casein Form Functional Complexes by Aggregation
IS  - 11
VL  - 9
DO  - 10.3390/foods9111576
UR  - conv_485
ER  - 
@article{
author = "Radosavljević, Jelena and Apostolović, Danijela and Mihailović, Jelena and Atanasković-Marković, Marina and Burazer, Lidija and van Hage, Marianne and Ćirković-Veličković, Tanja",
year = "2020",
abstract = "The aim of this study was to identify short digestion-resistant peptides (SDRPs) released by pepsin digestion of the whole cow's milk and examine their IgE reactivity and allergenicity. Raw milk was subjected to simulated gastric digestion. SDRPs were fractionated from the digests and identified by MS. Milk SDRPs were evaluated for aggregability, propensity to compete for IgE binding with individual milk allergens, and ability to bind IgG4 from allergic and milk-tolerant individuals. The majority of milk SDRPs originated from caseins (97% of peptides) and overlapped with the known IgE epitopes of cow's milk allergens. SDRPs competed with milk proteins for binding to human IgE and readily formed aggregates. The average peptide length was 10.6 +/- 3.5 amino acids. The ability to provoke allergenic in vivo responses was confirmed by skin-prick testing (SPT) in five milk-allergic subjects. This was attributed to the peptide ability to aggregate into non-covalent complexes. SDRPs are able to induce response in SPT, but only in 50% of the sera SDRPs were able to inhibit IgG4 binding to caseins. Hence, SDRPs corresponding to the mainly continuous epitopes of milk proteins induce allergenic in vivo responses in milk-allergic subjects due to aggregation.",
publisher = "MDPI, Basel",
journal = "Foods",
title = "Digestomics of Cow's Milk: Short Digestion-Resistant Peptides of Casein Form Functional Complexes by Aggregation",
number = "11",
volume = "9",
doi = "10.3390/foods9111576",
url = "conv_485"
}
Radosavljević, J., Apostolović, D., Mihailović, J., Atanasković-Marković, M., Burazer, L., van Hage, M.,& Ćirković-Veličković, T.. (2020). Digestomics of Cow's Milk: Short Digestion-Resistant Peptides of Casein Form Functional Complexes by Aggregation. in Foods
MDPI, Basel., 9(11).
https://doi.org/10.3390/foods9111576
conv_485
Radosavljević J, Apostolović D, Mihailović J, Atanasković-Marković M, Burazer L, van Hage M, Ćirković-Veličković T. Digestomics of Cow's Milk: Short Digestion-Resistant Peptides of Casein Form Functional Complexes by Aggregation. in Foods. 2020;9(11).
doi:10.3390/foods9111576
conv_485 .
Radosavljević, Jelena, Apostolović, Danijela, Mihailović, Jelena, Atanasković-Marković, Marina, Burazer, Lidija, van Hage, Marianne, Ćirković-Veličković, Tanja, "Digestomics of Cow's Milk: Short Digestion-Resistant Peptides of Casein Form Functional Complexes by Aggregation" in Foods, 9, no. 11 (2020),
https://doi.org/10.3390/foods9111576 .,
conv_485 .
7
4

In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress

Smiljanić, Katarina; Prodić, Ivana; Apostolović, Danijela; Cvetković, Anka; Veljović, Đorđe; Mutić, Jelena; van Hage, Marianne; Burazer, Lidija; Ćirković-Veličković, Tanja

(Pergamon-Elsevier Science Ltd, Oxford, 2019)

TY  - JOUR
AU  - Smiljanić, Katarina
AU  - Prodić, Ivana
AU  - Apostolović, Danijela
AU  - Cvetković, Anka
AU  - Veljović, Đorđe
AU  - Mutić, Jelena
AU  - van Hage, Marianne
AU  - Burazer, Lidija
AU  - Ćirković-Veličković, Tanja
PY  - 2019
UR  - http://intor.torlakinstitut.com/handle/123456789/536
AB  - An association between pollution (e.g., from traffic emissions) and the increased prevalence of respiratory allergies has been observed. Field-realistic exposure studies provide the most relevant assessment of the effects of the intensity and diversity of urban and industrial contamination on pollen structure and allergenicity. The significance of in-depth post-translational modification (PTM) studies of pollen proteomes, when compared with studies on other aspects of pollution and altered pollen allergenicity, has not yet been determined; hence, little progress has been made within this field. We undertook a comprehensive comparative analysis of multiple polluted and environmentally preserved Phleum pratense (Timothy grass) pollen samples using scanning electron microscopy, in-depth PTM profiling, determination of organic and inorganic pollutants, analysis of the release of sub-pollen particles and phenols/proteins, and analysis of proteome expression using high resolution tandem mass spectrometry. In addition, we used quantitative enzyme-linked immunosorbent assays (ELISA) and immunoglobulin E (IgE) immunoblotting. An increased phenolic content and release of sub-pollen particles was found in pollen samples from the polluted area, including a significantly higher content of mercury, cadmium, and manganese, with irregular long spines on pollen grain surface structures. Antioxidative defense-related enzymes were significantly upregulated and seven oxidative PTMs were significantly increased (methionine, histidine, lysine, and proline oxidation; tyrosine glycosylation, lysine 4-hydroxy-2-nonenal adduct, and lysine carbamylation) in pollen exposed to the chemical plant and road traffic pollution sources. Oxidative modifications affected several Timothy pollen allergens; Phl p 6, in particular, exhibited several different oxidative modifications. The expression of Phl p 6, 12, and 13 allergens were downregulated in polluted pollen, and IgE binding to pollen extract was substantially lower in the 18 patients studied, as measured by quantitative ELISA. Quantitative, unrestricted, and detailed PTM searches using an enrichment-free approach pointed to modification of Timothy pollen allergens and suggested that heavy metals are primarily responsible for oxidative stress effects observed in pollen proteins.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Environment International
T1  - In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress
EP  - 658
SP  - 644
VL  - 126
DO  - 10.1016/j.envint.2019.03.001
UR  - conv_451
ER  - 
@article{
author = "Smiljanić, Katarina and Prodić, Ivana and Apostolović, Danijela and Cvetković, Anka and Veljović, Đorđe and Mutić, Jelena and van Hage, Marianne and Burazer, Lidija and Ćirković-Veličković, Tanja",
year = "2019",
abstract = "An association between pollution (e.g., from traffic emissions) and the increased prevalence of respiratory allergies has been observed. Field-realistic exposure studies provide the most relevant assessment of the effects of the intensity and diversity of urban and industrial contamination on pollen structure and allergenicity. The significance of in-depth post-translational modification (PTM) studies of pollen proteomes, when compared with studies on other aspects of pollution and altered pollen allergenicity, has not yet been determined; hence, little progress has been made within this field. We undertook a comprehensive comparative analysis of multiple polluted and environmentally preserved Phleum pratense (Timothy grass) pollen samples using scanning electron microscopy, in-depth PTM profiling, determination of organic and inorganic pollutants, analysis of the release of sub-pollen particles and phenols/proteins, and analysis of proteome expression using high resolution tandem mass spectrometry. In addition, we used quantitative enzyme-linked immunosorbent assays (ELISA) and immunoglobulin E (IgE) immunoblotting. An increased phenolic content and release of sub-pollen particles was found in pollen samples from the polluted area, including a significantly higher content of mercury, cadmium, and manganese, with irregular long spines on pollen grain surface structures. Antioxidative defense-related enzymes were significantly upregulated and seven oxidative PTMs were significantly increased (methionine, histidine, lysine, and proline oxidation; tyrosine glycosylation, lysine 4-hydroxy-2-nonenal adduct, and lysine carbamylation) in pollen exposed to the chemical plant and road traffic pollution sources. Oxidative modifications affected several Timothy pollen allergens; Phl p 6, in particular, exhibited several different oxidative modifications. The expression of Phl p 6, 12, and 13 allergens were downregulated in polluted pollen, and IgE binding to pollen extract was substantially lower in the 18 patients studied, as measured by quantitative ELISA. Quantitative, unrestricted, and detailed PTM searches using an enrichment-free approach pointed to modification of Timothy pollen allergens and suggested that heavy metals are primarily responsible for oxidative stress effects observed in pollen proteins.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Environment International",
title = "In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress",
pages = "658-644",
volume = "126",
doi = "10.1016/j.envint.2019.03.001",
url = "conv_451"
}
Smiljanić, K., Prodić, I., Apostolović, D., Cvetković, A., Veljović, Đ., Mutić, J., van Hage, M., Burazer, L.,& Ćirković-Veličković, T.. (2019). In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress. in Environment International
Pergamon-Elsevier Science Ltd, Oxford., 126, 644-658.
https://doi.org/10.1016/j.envint.2019.03.001
conv_451
Smiljanić K, Prodić I, Apostolović D, Cvetković A, Veljović Đ, Mutić J, van Hage M, Burazer L, Ćirković-Veličković T. In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress. in Environment International. 2019;126:644-658.
doi:10.1016/j.envint.2019.03.001
conv_451 .
Smiljanić, Katarina, Prodić, Ivana, Apostolović, Danijela, Cvetković, Anka, Veljović, Đorđe, Mutić, Jelena, van Hage, Marianne, Burazer, Lidija, Ćirković-Veličković, Tanja, "In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress" in Environment International, 126 (2019):644-658,
https://doi.org/10.1016/j.envint.2019.03.001 .,
conv_451 .
2
6
5
7