Ruas-Madiedo, Patricia

Link to this page

Authority KeyName Variants
71202dad-1005-4281-8130-aea7383539d8
  • Ruas-Madiedo, Patricia (5)
Projects

Author's Bibliography

Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11

Živković, Milica; Miljković, Marija; Ruas-Madiedo, Patricia; Strahinić, Ivana; Tolinački, Maja; Golić, Nataša; Kojić, Milan

(Amer Soc Microbiology, Washington, 2015)

TY  - JOUR
AU  - Živković, Milica
AU  - Miljković, Marija
AU  - Ruas-Madiedo, Patricia
AU  - Strahinić, Ivana
AU  - Tolinački, Maja
AU  - Golić, Nataša
AU  - Kojić, Milan
PY  - 2015
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/886
UR  - http://intor.torlakinstitut.com/handle/123456789/738
AB  - Lactobacillus paraplantarum BGCG11, a putative probiotic strain isolated from a soft, white, artisanal cheese, produces a high-molecular-weight heteropolysaccharide, exopolysaccharide (EPS)-CG11, responsible for the ropy phenotype and immunomodulatory activity of the strain. In this study, a 26.4-kb region originating from the pCG1 plasmid, previously shown to be responsible for the production of EPS-CG11 and a ropy phenotype, was cloned, sequenced, and functionally characterized. In this region 16 putative open reading frames (ORFs), encoding enzymes for the production of EPS-CG11, were organized in specific loci involved in the biosynthesis of the repeat unit, polymerization, export, regulation, and chain length determination. Interestingly, downstream of the eps gene cluster, a putative transposase gene was identified, followed by an additional rfb gene cluster containing the rfbACBD genes, the ones most probably responsible for dTDP-L-rhamnose biosynthesis. The functional analysis showed that the production of the high-molecular-weight fraction of EPS-CG11 was absent in two knockout mutants, one in the eps and the other in the rfb gene cluster, as confirmed by size exclusion chromatography analysis. Therefore, both eps and rfb genes clusters are prerequisites for the production of high-molecular-weight EPS-CG11 and for the ropy phenotype of strain L. paraplantarum BGCG11.
PB  - Amer Soc Microbiology, Washington
T2  - Applied and Environmental Microbiology
T1  - Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11
EP  - 1396
IS  - 4
SP  - 1387
VL  - 81
DO  - 10.1128/AEM.03028-14
ER  - 
@article{
author = "Živković, Milica and Miljković, Marija and Ruas-Madiedo, Patricia and Strahinić, Ivana and Tolinački, Maja and Golić, Nataša and Kojić, Milan",
year = "2015",
abstract = "Lactobacillus paraplantarum BGCG11, a putative probiotic strain isolated from a soft, white, artisanal cheese, produces a high-molecular-weight heteropolysaccharide, exopolysaccharide (EPS)-CG11, responsible for the ropy phenotype and immunomodulatory activity of the strain. In this study, a 26.4-kb region originating from the pCG1 plasmid, previously shown to be responsible for the production of EPS-CG11 and a ropy phenotype, was cloned, sequenced, and functionally characterized. In this region 16 putative open reading frames (ORFs), encoding enzymes for the production of EPS-CG11, were organized in specific loci involved in the biosynthesis of the repeat unit, polymerization, export, regulation, and chain length determination. Interestingly, downstream of the eps gene cluster, a putative transposase gene was identified, followed by an additional rfb gene cluster containing the rfbACBD genes, the ones most probably responsible for dTDP-L-rhamnose biosynthesis. The functional analysis showed that the production of the high-molecular-weight fraction of EPS-CG11 was absent in two knockout mutants, one in the eps and the other in the rfb gene cluster, as confirmed by size exclusion chromatography analysis. Therefore, both eps and rfb genes clusters are prerequisites for the production of high-molecular-weight EPS-CG11 and for the ropy phenotype of strain L. paraplantarum BGCG11.",
publisher = "Amer Soc Microbiology, Washington",
journal = "Applied and Environmental Microbiology",
title = "Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11",
pages = "1396-1387",
number = "4",
volume = "81",
doi = "10.1128/AEM.03028-14"
}
Živković, M., Miljković, M., Ruas-Madiedo, P., Strahinić, I., Tolinački, M., Golić, N.,& Kojić, M.. (2015). Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11. in Applied and Environmental Microbiology
Amer Soc Microbiology, Washington., 81(4), 1387-1396.
https://doi.org/10.1128/AEM.03028-14
Živković M, Miljković M, Ruas-Madiedo P, Strahinić I, Tolinački M, Golić N, Kojić M. Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11. in Applied and Environmental Microbiology. 2015;81(4):1387-1396.
doi:10.1128/AEM.03028-14 .
Živković, Milica, Miljković, Marija, Ruas-Madiedo, Patricia, Strahinić, Ivana, Tolinački, Maja, Golić, Nataša, Kojić, Milan, "Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11" in Applied and Environmental Microbiology, 81, no. 4 (2015):1387-1396,
https://doi.org/10.1128/AEM.03028-14 . .
37
11
33

Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX

Živković, Milica; Hidalgo-Cantabrana, Claudio; Kojić, Milan; Gueimonde, Miguel; Golić, Nataša; Ruas-Madiedo, Patricia

(Elsevier Science Bv, Amsterdam, 2015)

TY  - JOUR
AU  - Živković, Milica
AU  - Hidalgo-Cantabrana, Claudio
AU  - Kojić, Milan
AU  - Gueimonde, Miguel
AU  - Golić, Nataša
AU  - Ruas-Madiedo, Patricia
PY  - 2015
UR  - http://intor.torlakinstitut.com/handle/123456789/707
AB  - The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while stain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of mud, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak "co-adjuvants" helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells.
PB  - Elsevier Science Bv, Amsterdam
T2  - Food Research International
T1  - Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX
EP  - 207
SP  - 199
VL  - 74
DO  - 10.1016/j.foodres.2015.05.012
ER  - 
@article{
author = "Živković, Milica and Hidalgo-Cantabrana, Claudio and Kojić, Milan and Gueimonde, Miguel and Golić, Nataša and Ruas-Madiedo, Patricia",
year = "2015",
abstract = "The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while stain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of mud, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak "co-adjuvants" helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Food Research International",
title = "Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX",
pages = "207-199",
volume = "74",
doi = "10.1016/j.foodres.2015.05.012"
}
Živković, M., Hidalgo-Cantabrana, C., Kojić, M., Gueimonde, M., Golić, N.,& Ruas-Madiedo, P.. (2015). Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. in Food Research International
Elsevier Science Bv, Amsterdam., 74, 199-207.
https://doi.org/10.1016/j.foodres.2015.05.012
Živković M, Hidalgo-Cantabrana C, Kojić M, Gueimonde M, Golić N, Ruas-Madiedo P. Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. in Food Research International. 2015;74:199-207.
doi:10.1016/j.foodres.2015.05.012 .
Živković, Milica, Hidalgo-Cantabrana, Claudio, Kojić, Milan, Gueimonde, Miguel, Golić, Nataša, Ruas-Madiedo, Patricia, "Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX" in Food Research International, 74 (2015):199-207,
https://doi.org/10.1016/j.foodres.2015.05.012 . .
1
30
12
34

Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX

Živković, Milica; Hidalgo-Cantabrana, Claudio; Kojić, Milan; Gueimonde, Miguel; Golić, Nataša; Ruas-Madiedo, Patricia

(Elsevier Science Bv, Amsterdam, 2015)

TY  - JOUR
AU  - Živković, Milica
AU  - Hidalgo-Cantabrana, Claudio
AU  - Kojić, Milan
AU  - Gueimonde, Miguel
AU  - Golić, Nataša
AU  - Ruas-Madiedo, Patricia
PY  - 2015
UR  - http://intor.torlakinstitut.com/handle/123456789/708
AB  - The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while stain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of mud, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak "co-adjuvants" helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells.
PB  - Elsevier Science Bv, Amsterdam
T2  - Food Research International
T1  - Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX
EP  - 207
SP  - 199
VL  - 74
DO  - 10.1016/j.foodres.2015.05.012
ER  - 
@article{
author = "Živković, Milica and Hidalgo-Cantabrana, Claudio and Kojić, Milan and Gueimonde, Miguel and Golić, Nataša and Ruas-Madiedo, Patricia",
year = "2015",
abstract = "The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while stain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of mud, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak "co-adjuvants" helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Food Research International",
title = "Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX",
pages = "207-199",
volume = "74",
doi = "10.1016/j.foodres.2015.05.012"
}
Živković, M., Hidalgo-Cantabrana, C., Kojić, M., Gueimonde, M., Golić, N.,& Ruas-Madiedo, P.. (2015). Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. in Food Research International
Elsevier Science Bv, Amsterdam., 74, 199-207.
https://doi.org/10.1016/j.foodres.2015.05.012
Živković M, Hidalgo-Cantabrana C, Kojić M, Gueimonde M, Golić N, Ruas-Madiedo P. Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. in Food Research International. 2015;74:199-207.
doi:10.1016/j.foodres.2015.05.012 .
Živković, Milica, Hidalgo-Cantabrana, Claudio, Kojić, Milan, Gueimonde, Miguel, Golić, Nataša, Ruas-Madiedo, Patricia, "Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX" in Food Research International, 74 (2015):199-207,
https://doi.org/10.1016/j.foodres.2015.05.012 . .
1
30
12
34

Exopolysaccharide-producing Bifidobacterium animalis subsp lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue

Hidalgo-Cantabrana, Claudio; Živković, Milica; Lopez, Patricia; Suarez, Ana; Miljković, Marija; Kojić, Milan; Margolles, Abelardo; Golić, Nataša; Ruas-Madiedo, Patricia

(Elsevier Sci Ltd, Oxford, 2014)

TY  - JOUR
AU  - Hidalgo-Cantabrana, Claudio
AU  - Živković, Milica
AU  - Lopez, Patricia
AU  - Suarez, Ana
AU  - Miljković, Marija
AU  - Kojić, Milan
AU  - Margolles, Abelardo
AU  - Golić, Nataša
AU  - Ruas-Madiedo, Patricia
PY  - 2014
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/778
UR  - http://intor.torlakinstitut.com/handle/123456789/739
AB  - The effect of exopolysaccharide (EPS) producing bifidobacteria, and the EPS derived thereof, on the modulation of immune response was evaluated. Cells isolated from gut associated lymphoid tissue (GALT) and from peripheral blood mononuclear cells (PBMC) of naive rats were used. The proliferation and cytokine production of these immune cells in the presence of the three isogenic Bifidobacterium animalis subsp. lactis strains (A1, A1dOx and A1dOxR), as well as their purified polymers, were in vitro analysed. The cytokine pattern produced by immune cells isolated from GALT showed that most levels remained stable in the presence of the three strains or their corresponding polymers. However, in PBMC the UV-inactivated bacteria induced higher levels of the ratios IFN gamma/IL-17, TNF alpha/IL-10 and TNF alpha/TGF beta, and no variation in the ratio IFN gamma/IL-4. Thus, B. animalis subsp. lactis strains were able to activate blood monocytes as well as T lymphocytes towards a mild inflammatory Th1 response. Furthermore, only the EPS-A1dOxR was able to stimulate a response in a similar way than its EPS-producing bacterium. Our work supports the notion that some bifidobacterial EPS could play a role in mediating the dialog of these microorganisms with the immune system. In addition, this study emphasizes the effect that the origin of the immune cells has in results obtained; this could explain the great amount of contradiction found in literature about the immunomodulation capability of EPS from probiotic bacteria.
PB  - Elsevier Sci Ltd, Oxford
T2  - Anaerobe
T1  - Exopolysaccharide-producing Bifidobacterium animalis subsp lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue
EP  - 30
SP  - 24
VL  - 26
DO  - 10.1016/j.anaerobe.2014.01.003
ER  - 
@article{
author = "Hidalgo-Cantabrana, Claudio and Živković, Milica and Lopez, Patricia and Suarez, Ana and Miljković, Marija and Kojić, Milan and Margolles, Abelardo and Golić, Nataša and Ruas-Madiedo, Patricia",
year = "2014",
abstract = "The effect of exopolysaccharide (EPS) producing bifidobacteria, and the EPS derived thereof, on the modulation of immune response was evaluated. Cells isolated from gut associated lymphoid tissue (GALT) and from peripheral blood mononuclear cells (PBMC) of naive rats were used. The proliferation and cytokine production of these immune cells in the presence of the three isogenic Bifidobacterium animalis subsp. lactis strains (A1, A1dOx and A1dOxR), as well as their purified polymers, were in vitro analysed. The cytokine pattern produced by immune cells isolated from GALT showed that most levels remained stable in the presence of the three strains or their corresponding polymers. However, in PBMC the UV-inactivated bacteria induced higher levels of the ratios IFN gamma/IL-17, TNF alpha/IL-10 and TNF alpha/TGF beta, and no variation in the ratio IFN gamma/IL-4. Thus, B. animalis subsp. lactis strains were able to activate blood monocytes as well as T lymphocytes towards a mild inflammatory Th1 response. Furthermore, only the EPS-A1dOxR was able to stimulate a response in a similar way than its EPS-producing bacterium. Our work supports the notion that some bifidobacterial EPS could play a role in mediating the dialog of these microorganisms with the immune system. In addition, this study emphasizes the effect that the origin of the immune cells has in results obtained; this could explain the great amount of contradiction found in literature about the immunomodulation capability of EPS from probiotic bacteria.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Anaerobe",
title = "Exopolysaccharide-producing Bifidobacterium animalis subsp lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue",
pages = "30-24",
volume = "26",
doi = "10.1016/j.anaerobe.2014.01.003"
}
Hidalgo-Cantabrana, C., Živković, M., Lopez, P., Suarez, A., Miljković, M., Kojić, M., Margolles, A., Golić, N.,& Ruas-Madiedo, P.. (2014). Exopolysaccharide-producing Bifidobacterium animalis subsp lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue. in Anaerobe
Elsevier Sci Ltd, Oxford., 26, 24-30.
https://doi.org/10.1016/j.anaerobe.2014.01.003
Hidalgo-Cantabrana C, Živković M, Lopez P, Suarez A, Miljković M, Kojić M, Margolles A, Golić N, Ruas-Madiedo P. Exopolysaccharide-producing Bifidobacterium animalis subsp lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue. in Anaerobe. 2014;26:24-30.
doi:10.1016/j.anaerobe.2014.01.003 .
Hidalgo-Cantabrana, Claudio, Živković, Milica, Lopez, Patricia, Suarez, Ana, Miljković, Marija, Kojić, Milan, Margolles, Abelardo, Golić, Nataša, Ruas-Madiedo, Patricia, "Exopolysaccharide-producing Bifidobacterium animalis subsp lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue" in Anaerobe, 26 (2014):24-30,
https://doi.org/10.1016/j.anaerobe.2014.01.003 . .
4
53
33
55

Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics

Živković, Milica; Lopez, Patricia; Strahinić, Ivana; Suarez, Ana; Kojić, Milan; Fernandez-Garcia, Maria; Topisirović, Ljubiša; Golić, Nataša; Ruas-Madiedo, Patricia

(Elsevier, Amsterdam, 2012)

TY  - JOUR
AU  - Živković, Milica
AU  - Lopez, Patricia
AU  - Strahinić, Ivana
AU  - Suarez, Ana
AU  - Kojić, Milan
AU  - Fernandez-Garcia, Maria
AU  - Topisirović, Ljubiša
AU  - Golić, Nataša
AU  - Ruas-Madiedo, Patricia
PY  - 2012
UR  - http://intor.torlakinstitut.com/handle/123456789/709
AB  - Traditional fermented foods are the best source for the isolation of strains with specific traits to act as functional starters and to keep the biodiversity of the culture collections. Besides, these strains could be used in the formulation of foods claimed to promote health benefits, i.e. those containing probiotic microorganisms. For the rational selection of strains acting as probiotics, several in vitro tests have been proposed. In the current study, we have characterized the probiotic potential of the strain Lactobacillus paraplanta rum BGCG11, isolated from a Serbian soft, white, homemade cheese, which is able to produce a "ropy" exopolysaccharide (EPS). Three novobiocin derivative strains, which have lost the ropy phenotype, were characterized as well in order to determine the putative role of the EPS in the probiotic potential. Under chemically gastrointestinal conditions, all strains were able to survive around 1-2% (10(6)-10(7) cfu/ml cultivable bacteria) only when they were included in a food matrix (1% skimmed milk). The strains were more resistant to acid conditions than to bile salts and gastric or pancreatic enzymes, which could be due to a pre-adaptation of the parental strain to acidic conditions in the cheese habitat. The ropy EPS did not improve the survival of the producing strain. On the contrary, the presence of an EPS layer surrounding the strain BGCG11 hindered its adhesion to the three epithelial intestinal cell lines tested, since the adhesion of the three non-ropy derivatives was higher than the parental one and also than that of the reference strain Lactobacillus rhamnosus CC. Aiming to propose a potential target application of these strains as probiotics, the cytokine production of peripheral blood mononuclear cells (PBMC) was analyzed. The EPS-producing L paraplantarum BGCG11 strain showed an anti-inflammatory or immunosuppressor profile whereas the non-ropy derivative strains induced higher pro-inflammatory response. In addition, when PBMC were stimulated with increasing concentrations of the purified ropy EPS (1, 10 and 100 mu g/ml) the cytokine profile was similar to that obtained with the EPS-producing lactobacilli, therefore pointing to a putative role of this biopolymer in its immune response.
PB  - Elsevier, Amsterdam
T2  - International Journal of Food Microbiology
T1  - Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics
EP  - 162
IS  - 2
SP  - 155
VL  - 158
DO  - 10.1016/j.ijfoodmicro.2012.07.015
ER  - 
@article{
author = "Živković, Milica and Lopez, Patricia and Strahinić, Ivana and Suarez, Ana and Kojić, Milan and Fernandez-Garcia, Maria and Topisirović, Ljubiša and Golić, Nataša and Ruas-Madiedo, Patricia",
year = "2012",
abstract = "Traditional fermented foods are the best source for the isolation of strains with specific traits to act as functional starters and to keep the biodiversity of the culture collections. Besides, these strains could be used in the formulation of foods claimed to promote health benefits, i.e. those containing probiotic microorganisms. For the rational selection of strains acting as probiotics, several in vitro tests have been proposed. In the current study, we have characterized the probiotic potential of the strain Lactobacillus paraplanta rum BGCG11, isolated from a Serbian soft, white, homemade cheese, which is able to produce a "ropy" exopolysaccharide (EPS). Three novobiocin derivative strains, which have lost the ropy phenotype, were characterized as well in order to determine the putative role of the EPS in the probiotic potential. Under chemically gastrointestinal conditions, all strains were able to survive around 1-2% (10(6)-10(7) cfu/ml cultivable bacteria) only when they were included in a food matrix (1% skimmed milk). The strains were more resistant to acid conditions than to bile salts and gastric or pancreatic enzymes, which could be due to a pre-adaptation of the parental strain to acidic conditions in the cheese habitat. The ropy EPS did not improve the survival of the producing strain. On the contrary, the presence of an EPS layer surrounding the strain BGCG11 hindered its adhesion to the three epithelial intestinal cell lines tested, since the adhesion of the three non-ropy derivatives was higher than the parental one and also than that of the reference strain Lactobacillus rhamnosus CC. Aiming to propose a potential target application of these strains as probiotics, the cytokine production of peripheral blood mononuclear cells (PBMC) was analyzed. The EPS-producing L paraplantarum BGCG11 strain showed an anti-inflammatory or immunosuppressor profile whereas the non-ropy derivative strains induced higher pro-inflammatory response. In addition, when PBMC were stimulated with increasing concentrations of the purified ropy EPS (1, 10 and 100 mu g/ml) the cytokine profile was similar to that obtained with the EPS-producing lactobacilli, therefore pointing to a putative role of this biopolymer in its immune response.",
publisher = "Elsevier, Amsterdam",
journal = "International Journal of Food Microbiology",
title = "Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics",
pages = "162-155",
number = "2",
volume = "158",
doi = "10.1016/j.ijfoodmicro.2012.07.015"
}
Živković, M., Lopez, P., Strahinić, I., Suarez, A., Kojić, M., Fernandez-Garcia, M., Topisirović, L., Golić, N.,& Ruas-Madiedo, P.. (2012). Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. in International Journal of Food Microbiology
Elsevier, Amsterdam., 158(2), 155-162.
https://doi.org/10.1016/j.ijfoodmicro.2012.07.015
Živković M, Lopez P, Strahinić I, Suarez A, Kojić M, Fernandez-Garcia M, Topisirović L, Golić N, Ruas-Madiedo P. Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. in International Journal of Food Microbiology. 2012;158(2):155-162.
doi:10.1016/j.ijfoodmicro.2012.07.015 .
Živković, Milica, Lopez, Patricia, Strahinić, Ivana, Suarez, Ana, Kojić, Milan, Fernandez-Garcia, Maria, Topisirović, Ljubiša, Golić, Nataša, Ruas-Madiedo, Patricia, "Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics" in International Journal of Food Microbiology, 158, no. 2 (2012):155-162,
https://doi.org/10.1016/j.ijfoodmicro.2012.07.015 . .
7
113
76
112