Živković, Milica

Link to this page

Authority KeyName Variants
7328d76a-efbf-48c6-9be8-a5b64160d8e7
  • Živković, Milica (11)

Author's Bibliography

Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties

Terzić-Vidojević, Amarela; Veljović, Katarina; Tolinački, Maja; Živković, Milica; Lukić, Jovanka; Lozo, Jelena; Fira, Đorđe; Jovčić, Branko; Strahinić, Ivana; Begović, Jelena; Popović, Nikola; Miljković, Marija; Kojić, Milan; Topisirović, Ljubiša; Golić, Nataša

(Elsevier, Amsterdam, 2020)

TY  - JOUR
AU  - Terzić-Vidojević, Amarela
AU  - Veljović, Katarina
AU  - Tolinački, Maja
AU  - Živković, Milica
AU  - Lukić, Jovanka
AU  - Lozo, Jelena
AU  - Fira, Đorđe
AU  - Jovčić, Branko
AU  - Strahinić, Ivana
AU  - Begović, Jelena
AU  - Popović, Nikola
AU  - Miljković, Marija
AU  - Kojić, Milan
AU  - Topisirović, Ljubiša
AU  - Golić, Nataša
PY  - 2020
UR  - http://intor.torlakinstitut.com/handle/123456789/733
AB  - The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.
PB  - Elsevier, Amsterdam
T2  - Food Research International
T1  - Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties
VL  - 136
DO  - 10.1016/j.foodres.2020.109494
ER  - 
@article{
author = "Terzić-Vidojević, Amarela and Veljović, Katarina and Tolinački, Maja and Živković, Milica and Lukić, Jovanka and Lozo, Jelena and Fira, Đorđe and Jovčić, Branko and Strahinić, Ivana and Begović, Jelena and Popović, Nikola and Miljković, Marija and Kojić, Milan and Topisirović, Ljubiša and Golić, Nataša",
year = "2020",
abstract = "The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.",
publisher = "Elsevier, Amsterdam",
journal = "Food Research International",
title = "Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties",
volume = "136",
doi = "10.1016/j.foodres.2020.109494"
}
Terzić-Vidojević, A., Veljović, K., Tolinački, M., Živković, M., Lukić, J., Lozo, J., Fira, Đ., Jovčić, B., Strahinić, I., Begović, J., Popović, N., Miljković, M., Kojić, M., Topisirović, L.,& Golić, N.. (2020). Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. in Food Research International
Elsevier, Amsterdam., 136.
https://doi.org/10.1016/j.foodres.2020.109494
Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. in Food Research International. 2020;136.
doi:10.1016/j.foodres.2020.109494 .
Terzić-Vidojević, Amarela, Veljović, Katarina, Tolinački, Maja, Živković, Milica, Lukić, Jovanka, Lozo, Jelena, Fira, Đorđe, Jovčić, Branko, Strahinić, Ivana, Begović, Jelena, Popović, Nikola, Miljković, Marija, Kojić, Milan, Topisirović, Ljubiša, Golić, Nataša, "Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties" in Food Research International, 136 (2020),
https://doi.org/10.1016/j.foodres.2020.109494 . .
51
47

Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties

Terzić-Vidojević, Amarela; Veljović, Katarina; Tolinački, Maja; Živković, Milica; Lukić, Jovanka; Lozo, Jelena; Fira, Đorđe; Jovčić, Branko; Strahinić, Ivana; Begović, Jelena; Popović, Nikola; Miljković, Marija; Kojić, Milan; Topisirović, Ljubiša; Golić, Nataša

(Elsevier, Amsterdam, 2020)

TY  - JOUR
AU  - Terzić-Vidojević, Amarela
AU  - Veljović, Katarina
AU  - Tolinački, Maja
AU  - Živković, Milica
AU  - Lukić, Jovanka
AU  - Lozo, Jelena
AU  - Fira, Đorđe
AU  - Jovčić, Branko
AU  - Strahinić, Ivana
AU  - Begović, Jelena
AU  - Popović, Nikola
AU  - Miljković, Marija
AU  - Kojić, Milan
AU  - Topisirović, Ljubiša
AU  - Golić, Nataša
PY  - 2020
UR  - http://intor.torlakinstitut.com/handle/123456789/732
AB  - The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.
PB  - Elsevier, Amsterdam
T2  - Food Research International
T1  - Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties
VL  - 136
DO  - 10.1016/j.foodres.2020.109494
ER  - 
@article{
author = "Terzić-Vidojević, Amarela and Veljović, Katarina and Tolinački, Maja and Živković, Milica and Lukić, Jovanka and Lozo, Jelena and Fira, Đorđe and Jovčić, Branko and Strahinić, Ivana and Begović, Jelena and Popović, Nikola and Miljković, Marija and Kojić, Milan and Topisirović, Ljubiša and Golić, Nataša",
year = "2020",
abstract = "The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.",
publisher = "Elsevier, Amsterdam",
journal = "Food Research International",
title = "Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties",
volume = "136",
doi = "10.1016/j.foodres.2020.109494"
}
Terzić-Vidojević, A., Veljović, K., Tolinački, M., Živković, M., Lukić, J., Lozo, J., Fira, Đ., Jovčić, B., Strahinić, I., Begović, J., Popović, N., Miljković, M., Kojić, M., Topisirović, L.,& Golić, N.. (2020). Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. in Food Research International
Elsevier, Amsterdam., 136.
https://doi.org/10.1016/j.foodres.2020.109494
Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. in Food Research International. 2020;136.
doi:10.1016/j.foodres.2020.109494 .
Terzić-Vidojević, Amarela, Veljović, Katarina, Tolinački, Maja, Živković, Milica, Lukić, Jovanka, Lozo, Jelena, Fira, Đorđe, Jovčić, Branko, Strahinić, Ivana, Begović, Jelena, Popović, Nikola, Miljković, Marija, Kojić, Milan, Topisirović, Ljubiša, Golić, Nataša, "Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties" in Food Research International, 136 (2020),
https://doi.org/10.1016/j.foodres.2020.109494 . .
51
47

Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11

Živković, Milica; Miljković, Marija; Ruas-Madiedo, Patricia; Strahinić, Ivana; Tolinački, Maja; Golić, Nataša; Kojić, Milan

(Amer Soc Microbiology, Washington, 2015)

TY  - JOUR
AU  - Živković, Milica
AU  - Miljković, Marija
AU  - Ruas-Madiedo, Patricia
AU  - Strahinić, Ivana
AU  - Tolinački, Maja
AU  - Golić, Nataša
AU  - Kojić, Milan
PY  - 2015
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/886
UR  - http://intor.torlakinstitut.com/handle/123456789/738
AB  - Lactobacillus paraplantarum BGCG11, a putative probiotic strain isolated from a soft, white, artisanal cheese, produces a high-molecular-weight heteropolysaccharide, exopolysaccharide (EPS)-CG11, responsible for the ropy phenotype and immunomodulatory activity of the strain. In this study, a 26.4-kb region originating from the pCG1 plasmid, previously shown to be responsible for the production of EPS-CG11 and a ropy phenotype, was cloned, sequenced, and functionally characterized. In this region 16 putative open reading frames (ORFs), encoding enzymes for the production of EPS-CG11, were organized in specific loci involved in the biosynthesis of the repeat unit, polymerization, export, regulation, and chain length determination. Interestingly, downstream of the eps gene cluster, a putative transposase gene was identified, followed by an additional rfb gene cluster containing the rfbACBD genes, the ones most probably responsible for dTDP-L-rhamnose biosynthesis. The functional analysis showed that the production of the high-molecular-weight fraction of EPS-CG11 was absent in two knockout mutants, one in the eps and the other in the rfb gene cluster, as confirmed by size exclusion chromatography analysis. Therefore, both eps and rfb genes clusters are prerequisites for the production of high-molecular-weight EPS-CG11 and for the ropy phenotype of strain L. paraplantarum BGCG11.
PB  - Amer Soc Microbiology, Washington
T2  - Applied and Environmental Microbiology
T1  - Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11
EP  - 1396
IS  - 4
SP  - 1387
VL  - 81
DO  - 10.1128/AEM.03028-14
ER  - 
@article{
author = "Živković, Milica and Miljković, Marija and Ruas-Madiedo, Patricia and Strahinić, Ivana and Tolinački, Maja and Golić, Nataša and Kojić, Milan",
year = "2015",
abstract = "Lactobacillus paraplantarum BGCG11, a putative probiotic strain isolated from a soft, white, artisanal cheese, produces a high-molecular-weight heteropolysaccharide, exopolysaccharide (EPS)-CG11, responsible for the ropy phenotype and immunomodulatory activity of the strain. In this study, a 26.4-kb region originating from the pCG1 plasmid, previously shown to be responsible for the production of EPS-CG11 and a ropy phenotype, was cloned, sequenced, and functionally characterized. In this region 16 putative open reading frames (ORFs), encoding enzymes for the production of EPS-CG11, were organized in specific loci involved in the biosynthesis of the repeat unit, polymerization, export, regulation, and chain length determination. Interestingly, downstream of the eps gene cluster, a putative transposase gene was identified, followed by an additional rfb gene cluster containing the rfbACBD genes, the ones most probably responsible for dTDP-L-rhamnose biosynthesis. The functional analysis showed that the production of the high-molecular-weight fraction of EPS-CG11 was absent in two knockout mutants, one in the eps and the other in the rfb gene cluster, as confirmed by size exclusion chromatography analysis. Therefore, both eps and rfb genes clusters are prerequisites for the production of high-molecular-weight EPS-CG11 and for the ropy phenotype of strain L. paraplantarum BGCG11.",
publisher = "Amer Soc Microbiology, Washington",
journal = "Applied and Environmental Microbiology",
title = "Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11",
pages = "1396-1387",
number = "4",
volume = "81",
doi = "10.1128/AEM.03028-14"
}
Živković, M., Miljković, M., Ruas-Madiedo, P., Strahinić, I., Tolinački, M., Golić, N.,& Kojić, M.. (2015). Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11. in Applied and Environmental Microbiology
Amer Soc Microbiology, Washington., 81(4), 1387-1396.
https://doi.org/10.1128/AEM.03028-14
Živković M, Miljković M, Ruas-Madiedo P, Strahinić I, Tolinački M, Golić N, Kojić M. Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11. in Applied and Environmental Microbiology. 2015;81(4):1387-1396.
doi:10.1128/AEM.03028-14 .
Živković, Milica, Miljković, Marija, Ruas-Madiedo, Patricia, Strahinić, Ivana, Tolinački, Maja, Golić, Nataša, Kojić, Milan, "Exopolysaccharide Production and Ropy Phenotype Are Determined by Two Gene Clusters in Putative Probiotic Strain Lactobacillus paraplantarum BGCG11" in Applied and Environmental Microbiology, 81, no. 4 (2015):1387-1396,
https://doi.org/10.1128/AEM.03028-14 . .
37
11
33

Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX

Živković, Milica; Hidalgo-Cantabrana, Claudio; Kojić, Milan; Gueimonde, Miguel; Golić, Nataša; Ruas-Madiedo, Patricia

(Elsevier Science Bv, Amsterdam, 2015)

TY  - JOUR
AU  - Živković, Milica
AU  - Hidalgo-Cantabrana, Claudio
AU  - Kojić, Milan
AU  - Gueimonde, Miguel
AU  - Golić, Nataša
AU  - Ruas-Madiedo, Patricia
PY  - 2015
UR  - http://intor.torlakinstitut.com/handle/123456789/707
AB  - The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while stain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of mud, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak "co-adjuvants" helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells.
PB  - Elsevier Science Bv, Amsterdam
T2  - Food Research International
T1  - Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX
EP  - 207
SP  - 199
VL  - 74
DO  - 10.1016/j.foodres.2015.05.012
ER  - 
@article{
author = "Živković, Milica and Hidalgo-Cantabrana, Claudio and Kojić, Milan and Gueimonde, Miguel and Golić, Nataša and Ruas-Madiedo, Patricia",
year = "2015",
abstract = "The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while stain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of mud, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak "co-adjuvants" helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Food Research International",
title = "Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX",
pages = "207-199",
volume = "74",
doi = "10.1016/j.foodres.2015.05.012"
}
Živković, M., Hidalgo-Cantabrana, C., Kojić, M., Gueimonde, M., Golić, N.,& Ruas-Madiedo, P.. (2015). Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. in Food Research International
Elsevier Science Bv, Amsterdam., 74, 199-207.
https://doi.org/10.1016/j.foodres.2015.05.012
Živković M, Hidalgo-Cantabrana C, Kojić M, Gueimonde M, Golić N, Ruas-Madiedo P. Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. in Food Research International. 2015;74:199-207.
doi:10.1016/j.foodres.2015.05.012 .
Živković, Milica, Hidalgo-Cantabrana, Claudio, Kojić, Milan, Gueimonde, Miguel, Golić, Nataša, Ruas-Madiedo, Patricia, "Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX" in Food Research International, 74 (2015):199-207,
https://doi.org/10.1016/j.foodres.2015.05.012 . .
1
30
12
34

Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX

Živković, Milica; Hidalgo-Cantabrana, Claudio; Kojić, Milan; Gueimonde, Miguel; Golić, Nataša; Ruas-Madiedo, Patricia

(Elsevier Science Bv, Amsterdam, 2015)

TY  - JOUR
AU  - Živković, Milica
AU  - Hidalgo-Cantabrana, Claudio
AU  - Kojić, Milan
AU  - Gueimonde, Miguel
AU  - Golić, Nataša
AU  - Ruas-Madiedo, Patricia
PY  - 2015
UR  - http://intor.torlakinstitut.com/handle/123456789/708
AB  - The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while stain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of mud, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak "co-adjuvants" helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells.
PB  - Elsevier Science Bv, Amsterdam
T2  - Food Research International
T1  - Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX
EP  - 207
SP  - 199
VL  - 74
DO  - 10.1016/j.foodres.2015.05.012
ER  - 
@article{
author = "Živković, Milica and Hidalgo-Cantabrana, Claudio and Kojić, Milan and Gueimonde, Miguel and Golić, Nataša and Ruas-Madiedo, Patricia",
year = "2015",
abstract = "The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while stain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of mud, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak "co-adjuvants" helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Food Research International",
title = "Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX",
pages = "207-199",
volume = "74",
doi = "10.1016/j.foodres.2015.05.012"
}
Živković, M., Hidalgo-Cantabrana, C., Kojić, M., Gueimonde, M., Golić, N.,& Ruas-Madiedo, P.. (2015). Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. in Food Research International
Elsevier Science Bv, Amsterdam., 74, 199-207.
https://doi.org/10.1016/j.foodres.2015.05.012
Živković M, Hidalgo-Cantabrana C, Kojić M, Gueimonde M, Golić N, Ruas-Madiedo P. Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. in Food Research International. 2015;74:199-207.
doi:10.1016/j.foodres.2015.05.012 .
Živković, Milica, Hidalgo-Cantabrana, Claudio, Kojić, Milan, Gueimonde, Miguel, Golić, Nataša, Ruas-Madiedo, Patricia, "Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX" in Food Research International, 74 (2015):199-207,
https://doi.org/10.1016/j.foodres.2015.05.012 . .
1
30
12
34

AggLb Is the Largest Cell-Aggregation Factor from Lactobacillus paracasei Subsp paracasei BGNJ1-64, Functions in Collagen Adhesion, and Pathogen Exclusion In Vitro

Miljković, Marija; Strahinić, Ivana; Tolinački, Maja; Živković, Milica; Kojić, Snežana; Golić, Nataša; Kojić, Milan

(Public Library Science, San Francisco, 2015)

TY  - JOUR
AU  - Miljković, Marija
AU  - Strahinić, Ivana
AU  - Tolinački, Maja
AU  - Živković, Milica
AU  - Kojić, Snežana
AU  - Golić, Nataša
AU  - Kojić, Milan
PY  - 2015
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/805
UR  - http://intor.torlakinstitut.com/handle/123456789/685
AB  - Eleven Lactobacillus strains with strong aggregation abilities were selected from a laboratory collection. In two of the strains, genes associated with aggregation capability were plasmid located and found to strongly correlate with collagen binding. The gene encoding the auto-aggregation-promoting protein (AggLb) of Lactobacillus paracasei subsp. paracasei BGNJ1-64 was cloned using a novel, wide-range-host shuttle cloning vector, pAZILSJ. The clone pALb35, containing a 11377-bp DNA fragment, was selected from the SacI plasmid library for its ability to provide carriers with the aggregation phenotype. The complete fragment was sequenced and four potential ORFs were detected, including the aggLb gene and three surrounding transposase genes. AggLb is the largest known cell-surface protein in lactobacilli, consisting of 2998 aa (318,611 Da). AggLb belongs to the collagen-binding superfamily and its C-terminal region contains 20 successive repeats that are identical even at the nucleotide level. Deletion of aggLb causes a loss of the capacity to form cell aggregates, whereas overexpression increases cellular aggregation, hydrophobicity and collagen-binding potential. PCR screening performed with three sets of primers based on the aggLb gene of BGNJ1-64 enabled detection of the same type of aggLb gene in five of eleven selected aggregation-positive Lactobacillus strains. Heterologous expression of aggLb confirmed the crucial role of the AggLb protein in cell aggregation and specific collagen binding, indicating that AggLb has a useful probiotic function in effective colonization of host tissue and prevention of pathogen colonization.
PB  - Public Library Science, San Francisco
T2  - PLoS One
T1  - AggLb Is the Largest Cell-Aggregation Factor from Lactobacillus paracasei Subsp paracasei BGNJ1-64, Functions in Collagen Adhesion, and Pathogen Exclusion In Vitro
IS  - 5
VL  - 10
DO  - 10.1371/journal.pone.0126387
ER  - 
@article{
author = "Miljković, Marija and Strahinić, Ivana and Tolinački, Maja and Živković, Milica and Kojić, Snežana and Golić, Nataša and Kojić, Milan",
year = "2015",
abstract = "Eleven Lactobacillus strains with strong aggregation abilities were selected from a laboratory collection. In two of the strains, genes associated with aggregation capability were plasmid located and found to strongly correlate with collagen binding. The gene encoding the auto-aggregation-promoting protein (AggLb) of Lactobacillus paracasei subsp. paracasei BGNJ1-64 was cloned using a novel, wide-range-host shuttle cloning vector, pAZILSJ. The clone pALb35, containing a 11377-bp DNA fragment, was selected from the SacI plasmid library for its ability to provide carriers with the aggregation phenotype. The complete fragment was sequenced and four potential ORFs were detected, including the aggLb gene and three surrounding transposase genes. AggLb is the largest known cell-surface protein in lactobacilli, consisting of 2998 aa (318,611 Da). AggLb belongs to the collagen-binding superfamily and its C-terminal region contains 20 successive repeats that are identical even at the nucleotide level. Deletion of aggLb causes a loss of the capacity to form cell aggregates, whereas overexpression increases cellular aggregation, hydrophobicity and collagen-binding potential. PCR screening performed with three sets of primers based on the aggLb gene of BGNJ1-64 enabled detection of the same type of aggLb gene in five of eleven selected aggregation-positive Lactobacillus strains. Heterologous expression of aggLb confirmed the crucial role of the AggLb protein in cell aggregation and specific collagen binding, indicating that AggLb has a useful probiotic function in effective colonization of host tissue and prevention of pathogen colonization.",
publisher = "Public Library Science, San Francisco",
journal = "PLoS One",
title = "AggLb Is the Largest Cell-Aggregation Factor from Lactobacillus paracasei Subsp paracasei BGNJ1-64, Functions in Collagen Adhesion, and Pathogen Exclusion In Vitro",
number = "5",
volume = "10",
doi = "10.1371/journal.pone.0126387"
}
Miljković, M., Strahinić, I., Tolinački, M., Živković, M., Kojić, S., Golić, N.,& Kojić, M.. (2015). AggLb Is the Largest Cell-Aggregation Factor from Lactobacillus paracasei Subsp paracasei BGNJ1-64, Functions in Collagen Adhesion, and Pathogen Exclusion In Vitro. in PLoS One
Public Library Science, San Francisco., 10(5).
https://doi.org/10.1371/journal.pone.0126387
Miljković M, Strahinić I, Tolinački M, Živković M, Kojić S, Golić N, Kojić M. AggLb Is the Largest Cell-Aggregation Factor from Lactobacillus paracasei Subsp paracasei BGNJ1-64, Functions in Collagen Adhesion, and Pathogen Exclusion In Vitro. in PLoS One. 2015;10(5).
doi:10.1371/journal.pone.0126387 .
Miljković, Marija, Strahinić, Ivana, Tolinački, Maja, Živković, Milica, Kojić, Snežana, Golić, Nataša, Kojić, Milan, "AggLb Is the Largest Cell-Aggregation Factor from Lactobacillus paracasei Subsp paracasei BGNJ1-64, Functions in Collagen Adhesion, and Pathogen Exclusion In Vitro" in PLoS One, 10, no. 5 (2015),
https://doi.org/10.1371/journal.pone.0126387 . .
2
39
16
37

Exopolysaccharide-producing Bifidobacterium animalis subsp lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue

Hidalgo-Cantabrana, Claudio; Živković, Milica; Lopez, Patricia; Suarez, Ana; Miljković, Marija; Kojić, Milan; Margolles, Abelardo; Golić, Nataša; Ruas-Madiedo, Patricia

(Elsevier Sci Ltd, Oxford, 2014)

TY  - JOUR
AU  - Hidalgo-Cantabrana, Claudio
AU  - Živković, Milica
AU  - Lopez, Patricia
AU  - Suarez, Ana
AU  - Miljković, Marija
AU  - Kojić, Milan
AU  - Margolles, Abelardo
AU  - Golić, Nataša
AU  - Ruas-Madiedo, Patricia
PY  - 2014
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/778
UR  - http://intor.torlakinstitut.com/handle/123456789/739
AB  - The effect of exopolysaccharide (EPS) producing bifidobacteria, and the EPS derived thereof, on the modulation of immune response was evaluated. Cells isolated from gut associated lymphoid tissue (GALT) and from peripheral blood mononuclear cells (PBMC) of naive rats were used. The proliferation and cytokine production of these immune cells in the presence of the three isogenic Bifidobacterium animalis subsp. lactis strains (A1, A1dOx and A1dOxR), as well as their purified polymers, were in vitro analysed. The cytokine pattern produced by immune cells isolated from GALT showed that most levels remained stable in the presence of the three strains or their corresponding polymers. However, in PBMC the UV-inactivated bacteria induced higher levels of the ratios IFN gamma/IL-17, TNF alpha/IL-10 and TNF alpha/TGF beta, and no variation in the ratio IFN gamma/IL-4. Thus, B. animalis subsp. lactis strains were able to activate blood monocytes as well as T lymphocytes towards a mild inflammatory Th1 response. Furthermore, only the EPS-A1dOxR was able to stimulate a response in a similar way than its EPS-producing bacterium. Our work supports the notion that some bifidobacterial EPS could play a role in mediating the dialog of these microorganisms with the immune system. In addition, this study emphasizes the effect that the origin of the immune cells has in results obtained; this could explain the great amount of contradiction found in literature about the immunomodulation capability of EPS from probiotic bacteria.
PB  - Elsevier Sci Ltd, Oxford
T2  - Anaerobe
T1  - Exopolysaccharide-producing Bifidobacterium animalis subsp lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue
EP  - 30
SP  - 24
VL  - 26
DO  - 10.1016/j.anaerobe.2014.01.003
ER  - 
@article{
author = "Hidalgo-Cantabrana, Claudio and Živković, Milica and Lopez, Patricia and Suarez, Ana and Miljković, Marija and Kojić, Milan and Margolles, Abelardo and Golić, Nataša and Ruas-Madiedo, Patricia",
year = "2014",
abstract = "The effect of exopolysaccharide (EPS) producing bifidobacteria, and the EPS derived thereof, on the modulation of immune response was evaluated. Cells isolated from gut associated lymphoid tissue (GALT) and from peripheral blood mononuclear cells (PBMC) of naive rats were used. The proliferation and cytokine production of these immune cells in the presence of the three isogenic Bifidobacterium animalis subsp. lactis strains (A1, A1dOx and A1dOxR), as well as their purified polymers, were in vitro analysed. The cytokine pattern produced by immune cells isolated from GALT showed that most levels remained stable in the presence of the three strains or their corresponding polymers. However, in PBMC the UV-inactivated bacteria induced higher levels of the ratios IFN gamma/IL-17, TNF alpha/IL-10 and TNF alpha/TGF beta, and no variation in the ratio IFN gamma/IL-4. Thus, B. animalis subsp. lactis strains were able to activate blood monocytes as well as T lymphocytes towards a mild inflammatory Th1 response. Furthermore, only the EPS-A1dOxR was able to stimulate a response in a similar way than its EPS-producing bacterium. Our work supports the notion that some bifidobacterial EPS could play a role in mediating the dialog of these microorganisms with the immune system. In addition, this study emphasizes the effect that the origin of the immune cells has in results obtained; this could explain the great amount of contradiction found in literature about the immunomodulation capability of EPS from probiotic bacteria.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Anaerobe",
title = "Exopolysaccharide-producing Bifidobacterium animalis subsp lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue",
pages = "30-24",
volume = "26",
doi = "10.1016/j.anaerobe.2014.01.003"
}
Hidalgo-Cantabrana, C., Živković, M., Lopez, P., Suarez, A., Miljković, M., Kojić, M., Margolles, A., Golić, N.,& Ruas-Madiedo, P.. (2014). Exopolysaccharide-producing Bifidobacterium animalis subsp lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue. in Anaerobe
Elsevier Sci Ltd, Oxford., 26, 24-30.
https://doi.org/10.1016/j.anaerobe.2014.01.003
Hidalgo-Cantabrana C, Živković M, Lopez P, Suarez A, Miljković M, Kojić M, Margolles A, Golić N, Ruas-Madiedo P. Exopolysaccharide-producing Bifidobacterium animalis subsp lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue. in Anaerobe. 2014;26:24-30.
doi:10.1016/j.anaerobe.2014.01.003 .
Hidalgo-Cantabrana, Claudio, Živković, Milica, Lopez, Patricia, Suarez, Ana, Miljković, Marija, Kojić, Milan, Margolles, Abelardo, Golić, Nataša, Ruas-Madiedo, Patricia, "Exopolysaccharide-producing Bifidobacterium animalis subsp lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue" in Anaerobe, 26 (2014):24-30,
https://doi.org/10.1016/j.anaerobe.2014.01.003 . .
4
53
33
55

Characterization of lactic acid bacteria isolated from artisanal Travnik young cheeses, sweet creams and sweet kajmaks over four seasons

Terzić-Vidojević, Amarela; Mihajlović, Sanja; Uzelac, Gordana; Veljović, Katarina; Tolinački, Maja; Živković, Milica; Topisirović, Ljubiša; Kojić, Milan

(Academic Press Ltd- Elsevier Science Ltd, London, 2014)

TY  - JOUR
AU  - Terzić-Vidojević, Amarela
AU  - Mihajlović, Sanja
AU  - Uzelac, Gordana
AU  - Veljović, Katarina
AU  - Tolinački, Maja
AU  - Živković, Milica
AU  - Topisirović, Ljubiša
AU  - Kojić, Milan
PY  - 2014
UR  - http://intor.torlakinstitut.com/handle/123456789/716
AB  - The aim of this study was to investigate the composition of lactic acid bacteria (LAB) in autochthonous young cheeses, sweet creams and sweet kajmaks produced in the Vlasic mountain region of central Bosnia and Herzegovina near the town of Travnik over a four season period. These three products were made from cow's milk by a traditional method without the addition of a starter culture. Preliminary characterization with phenotype-based assays and identification using rep-PCR with a (GTG)(5) primer and 16S rDNA sequence analysis were undertaken for 460 LAB isolates obtained from all the examined samples. Fifteen species were identified as follows: Lactococcus lactis, Lactococcus raffinolactis, Lactococcus garviae, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus helveticus, Enterococcus faecium, Enterococcus durans, Enterococcus faecalis, Enterococcus italicus, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Leuconostoc lactis, Streptococcus thermophilus and Streptococcus mitis. A wide genotypic and phenotypic heterogeneity of the species was observed, particularly within the Lc. lactis strains. In all of the tested dairy products across four seasons, a significantly positive correlation (r = 0.690) between the presence of lactococci and enterococci and a negative correlation (r = 0.722) between the presence of lactococci and leuconostocs were recorded. Forty-five percent of the lactobacilli and 54.4% of the lactococci exhibited proteolytic activity, whereas 18.7% of the total LAB isolates exhibited antimicrobial activity.
PB  - Academic Press Ltd- Elsevier Science Ltd, London
T2  - Food Microbiology
T1  - Characterization of lactic acid bacteria isolated from artisanal Travnik young cheeses, sweet creams and sweet kajmaks over four seasons
EP  - 38
SP  - 27
VL  - 39
DO  - 10.1016/j.fm.2013.10.011
ER  - 
@article{
author = "Terzić-Vidojević, Amarela and Mihajlović, Sanja and Uzelac, Gordana and Veljović, Katarina and Tolinački, Maja and Živković, Milica and Topisirović, Ljubiša and Kojić, Milan",
year = "2014",
abstract = "The aim of this study was to investigate the composition of lactic acid bacteria (LAB) in autochthonous young cheeses, sweet creams and sweet kajmaks produced in the Vlasic mountain region of central Bosnia and Herzegovina near the town of Travnik over a four season period. These three products were made from cow's milk by a traditional method without the addition of a starter culture. Preliminary characterization with phenotype-based assays and identification using rep-PCR with a (GTG)(5) primer and 16S rDNA sequence analysis were undertaken for 460 LAB isolates obtained from all the examined samples. Fifteen species were identified as follows: Lactococcus lactis, Lactococcus raffinolactis, Lactococcus garviae, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus helveticus, Enterococcus faecium, Enterococcus durans, Enterococcus faecalis, Enterococcus italicus, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Leuconostoc lactis, Streptococcus thermophilus and Streptococcus mitis. A wide genotypic and phenotypic heterogeneity of the species was observed, particularly within the Lc. lactis strains. In all of the tested dairy products across four seasons, a significantly positive correlation (r = 0.690) between the presence of lactococci and enterococci and a negative correlation (r = 0.722) between the presence of lactococci and leuconostocs were recorded. Forty-five percent of the lactobacilli and 54.4% of the lactococci exhibited proteolytic activity, whereas 18.7% of the total LAB isolates exhibited antimicrobial activity.",
publisher = "Academic Press Ltd- Elsevier Science Ltd, London",
journal = "Food Microbiology",
title = "Characterization of lactic acid bacteria isolated from artisanal Travnik young cheeses, sweet creams and sweet kajmaks over four seasons",
pages = "38-27",
volume = "39",
doi = "10.1016/j.fm.2013.10.011"
}
Terzić-Vidojević, A., Mihajlović, S., Uzelac, G., Veljović, K., Tolinački, M., Živković, M., Topisirović, L.,& Kojić, M.. (2014). Characterization of lactic acid bacteria isolated from artisanal Travnik young cheeses, sweet creams and sweet kajmaks over four seasons. in Food Microbiology
Academic Press Ltd- Elsevier Science Ltd, London., 39, 27-38.
https://doi.org/10.1016/j.fm.2013.10.011
Terzić-Vidojević A, Mihajlović S, Uzelac G, Veljović K, Tolinački M, Živković M, Topisirović L, Kojić M. Characterization of lactic acid bacteria isolated from artisanal Travnik young cheeses, sweet creams and sweet kajmaks over four seasons. in Food Microbiology. 2014;39:27-38.
doi:10.1016/j.fm.2013.10.011 .
Terzić-Vidojević, Amarela, Mihajlović, Sanja, Uzelac, Gordana, Veljović, Katarina, Tolinački, Maja, Živković, Milica, Topisirović, Ljubiša, Kojić, Milan, "Characterization of lactic acid bacteria isolated from artisanal Travnik young cheeses, sweet creams and sweet kajmaks over four seasons" in Food Microbiology, 39 (2014):27-38,
https://doi.org/10.1016/j.fm.2013.10.011 . .
38
23
39

Aggregation Factor as an Inhibitor of Bacterial Binding to Gut Mucosa

Lukić, Jovanka; Strahinić, Ivana; Milenković, Marina; Živković, Milica; Tolinački, Maja; Kojić, Milan; Begović, Jelena

(Springer, New York, 2014)

TY  - JOUR
AU  - Lukić, Jovanka
AU  - Strahinić, Ivana
AU  - Milenković, Marina
AU  - Živković, Milica
AU  - Tolinački, Maja
AU  - Kojić, Milan
AU  - Begović, Jelena
PY  - 2014
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/748
UR  - http://intor.torlakinstitut.com/handle/123456789/687
AB  - Modern research in the area of probiotics is largely devoted to discovering factors that promote the adherence of probiotic candidates to host mucosal surfaces. The aim of the present study was to test the role of aggregation factor (AggL) and mucin-binding protein (MbpL) from Lactococcus sp. in adhesion to gastrointestinal mucosa. In vitro, ex vivo, and in vivo experiments in rats were used to assess the adhesive potential of these two proteins expressed in heterologous host Lactobacillus salivarius BGHO1. Although there was no influence of MbpL protein expression on BGHO1 adhesion to gut mucosa, expression of AggL had a negative effect on BGHO1 binding to ileal and colonic rat mucosa, as well as to human HT29-MTX cells and porcine gastric mucin in vitro. Because AggL did not decrease the adhesion of bacteria to intestinal fragments in ex vivo tests, where peristaltic simulation conditions were missing, we propose that intestinal motility could be a crucial force for eliminating aggregation-factor-bearing bacteria. Bacterial strains expressing aggregation factor could facilitate the removal of pathogens through the coaggregation mechanism, thus balancing gut microbial ecosystems in people affected by intestinal bacteria overgrowth.
PB  - Springer, New York
T2  - Microbial Ecology
T1  - Aggregation Factor as an Inhibitor of Bacterial Binding to Gut Mucosa
EP  - 644
IS  - 3
SP  - 633
VL  - 68
DO  - 10.1007/s00248-014-0426-1
ER  - 
@article{
author = "Lukić, Jovanka and Strahinić, Ivana and Milenković, Marina and Živković, Milica and Tolinački, Maja and Kojić, Milan and Begović, Jelena",
year = "2014",
abstract = "Modern research in the area of probiotics is largely devoted to discovering factors that promote the adherence of probiotic candidates to host mucosal surfaces. The aim of the present study was to test the role of aggregation factor (AggL) and mucin-binding protein (MbpL) from Lactococcus sp. in adhesion to gastrointestinal mucosa. In vitro, ex vivo, and in vivo experiments in rats were used to assess the adhesive potential of these two proteins expressed in heterologous host Lactobacillus salivarius BGHO1. Although there was no influence of MbpL protein expression on BGHO1 adhesion to gut mucosa, expression of AggL had a negative effect on BGHO1 binding to ileal and colonic rat mucosa, as well as to human HT29-MTX cells and porcine gastric mucin in vitro. Because AggL did not decrease the adhesion of bacteria to intestinal fragments in ex vivo tests, where peristaltic simulation conditions were missing, we propose that intestinal motility could be a crucial force for eliminating aggregation-factor-bearing bacteria. Bacterial strains expressing aggregation factor could facilitate the removal of pathogens through the coaggregation mechanism, thus balancing gut microbial ecosystems in people affected by intestinal bacteria overgrowth.",
publisher = "Springer, New York",
journal = "Microbial Ecology",
title = "Aggregation Factor as an Inhibitor of Bacterial Binding to Gut Mucosa",
pages = "644-633",
number = "3",
volume = "68",
doi = "10.1007/s00248-014-0426-1"
}
Lukić, J., Strahinić, I., Milenković, M., Živković, M., Tolinački, M., Kojić, M.,& Begović, J.. (2014). Aggregation Factor as an Inhibitor of Bacterial Binding to Gut Mucosa. in Microbial Ecology
Springer, New York., 68(3), 633-644.
https://doi.org/10.1007/s00248-014-0426-1
Lukić J, Strahinić I, Milenković M, Živković M, Tolinački M, Kojić M, Begović J. Aggregation Factor as an Inhibitor of Bacterial Binding to Gut Mucosa. in Microbial Ecology. 2014;68(3):633-644.
doi:10.1007/s00248-014-0426-1 .
Lukić, Jovanka, Strahinić, Ivana, Milenković, Marina, Živković, Milica, Tolinački, Maja, Kojić, Milan, Begović, Jelena, "Aggregation Factor as an Inhibitor of Bacterial Binding to Gut Mucosa" in Microbial Ecology, 68, no. 3 (2014):633-644,
https://doi.org/10.1007/s00248-014-0426-1 . .
22
14
22

Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics

Živković, Milica; Lopez, Patricia; Strahinić, Ivana; Suarez, Ana; Kojić, Milan; Fernandez-Garcia, Maria; Topisirović, Ljubiša; Golić, Nataša; Ruas-Madiedo, Patricia

(Elsevier, Amsterdam, 2012)

TY  - JOUR
AU  - Živković, Milica
AU  - Lopez, Patricia
AU  - Strahinić, Ivana
AU  - Suarez, Ana
AU  - Kojić, Milan
AU  - Fernandez-Garcia, Maria
AU  - Topisirović, Ljubiša
AU  - Golić, Nataša
AU  - Ruas-Madiedo, Patricia
PY  - 2012
UR  - http://intor.torlakinstitut.com/handle/123456789/709
AB  - Traditional fermented foods are the best source for the isolation of strains with specific traits to act as functional starters and to keep the biodiversity of the culture collections. Besides, these strains could be used in the formulation of foods claimed to promote health benefits, i.e. those containing probiotic microorganisms. For the rational selection of strains acting as probiotics, several in vitro tests have been proposed. In the current study, we have characterized the probiotic potential of the strain Lactobacillus paraplanta rum BGCG11, isolated from a Serbian soft, white, homemade cheese, which is able to produce a "ropy" exopolysaccharide (EPS). Three novobiocin derivative strains, which have lost the ropy phenotype, were characterized as well in order to determine the putative role of the EPS in the probiotic potential. Under chemically gastrointestinal conditions, all strains were able to survive around 1-2% (10(6)-10(7) cfu/ml cultivable bacteria) only when they were included in a food matrix (1% skimmed milk). The strains were more resistant to acid conditions than to bile salts and gastric or pancreatic enzymes, which could be due to a pre-adaptation of the parental strain to acidic conditions in the cheese habitat. The ropy EPS did not improve the survival of the producing strain. On the contrary, the presence of an EPS layer surrounding the strain BGCG11 hindered its adhesion to the three epithelial intestinal cell lines tested, since the adhesion of the three non-ropy derivatives was higher than the parental one and also than that of the reference strain Lactobacillus rhamnosus CC. Aiming to propose a potential target application of these strains as probiotics, the cytokine production of peripheral blood mononuclear cells (PBMC) was analyzed. The EPS-producing L paraplantarum BGCG11 strain showed an anti-inflammatory or immunosuppressor profile whereas the non-ropy derivative strains induced higher pro-inflammatory response. In addition, when PBMC were stimulated with increasing concentrations of the purified ropy EPS (1, 10 and 100 mu g/ml) the cytokine profile was similar to that obtained with the EPS-producing lactobacilli, therefore pointing to a putative role of this biopolymer in its immune response.
PB  - Elsevier, Amsterdam
T2  - International Journal of Food Microbiology
T1  - Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics
EP  - 162
IS  - 2
SP  - 155
VL  - 158
DO  - 10.1016/j.ijfoodmicro.2012.07.015
ER  - 
@article{
author = "Živković, Milica and Lopez, Patricia and Strahinić, Ivana and Suarez, Ana and Kojić, Milan and Fernandez-Garcia, Maria and Topisirović, Ljubiša and Golić, Nataša and Ruas-Madiedo, Patricia",
year = "2012",
abstract = "Traditional fermented foods are the best source for the isolation of strains with specific traits to act as functional starters and to keep the biodiversity of the culture collections. Besides, these strains could be used in the formulation of foods claimed to promote health benefits, i.e. those containing probiotic microorganisms. For the rational selection of strains acting as probiotics, several in vitro tests have been proposed. In the current study, we have characterized the probiotic potential of the strain Lactobacillus paraplanta rum BGCG11, isolated from a Serbian soft, white, homemade cheese, which is able to produce a "ropy" exopolysaccharide (EPS). Three novobiocin derivative strains, which have lost the ropy phenotype, were characterized as well in order to determine the putative role of the EPS in the probiotic potential. Under chemically gastrointestinal conditions, all strains were able to survive around 1-2% (10(6)-10(7) cfu/ml cultivable bacteria) only when they were included in a food matrix (1% skimmed milk). The strains were more resistant to acid conditions than to bile salts and gastric or pancreatic enzymes, which could be due to a pre-adaptation of the parental strain to acidic conditions in the cheese habitat. The ropy EPS did not improve the survival of the producing strain. On the contrary, the presence of an EPS layer surrounding the strain BGCG11 hindered its adhesion to the three epithelial intestinal cell lines tested, since the adhesion of the three non-ropy derivatives was higher than the parental one and also than that of the reference strain Lactobacillus rhamnosus CC. Aiming to propose a potential target application of these strains as probiotics, the cytokine production of peripheral blood mononuclear cells (PBMC) was analyzed. The EPS-producing L paraplantarum BGCG11 strain showed an anti-inflammatory or immunosuppressor profile whereas the non-ropy derivative strains induced higher pro-inflammatory response. In addition, when PBMC were stimulated with increasing concentrations of the purified ropy EPS (1, 10 and 100 mu g/ml) the cytokine profile was similar to that obtained with the EPS-producing lactobacilli, therefore pointing to a putative role of this biopolymer in its immune response.",
publisher = "Elsevier, Amsterdam",
journal = "International Journal of Food Microbiology",
title = "Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics",
pages = "162-155",
number = "2",
volume = "158",
doi = "10.1016/j.ijfoodmicro.2012.07.015"
}
Živković, M., Lopez, P., Strahinić, I., Suarez, A., Kojić, M., Fernandez-Garcia, M., Topisirović, L., Golić, N.,& Ruas-Madiedo, P.. (2012). Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. in International Journal of Food Microbiology
Elsevier, Amsterdam., 158(2), 155-162.
https://doi.org/10.1016/j.ijfoodmicro.2012.07.015
Živković M, Lopez P, Strahinić I, Suarez A, Kojić M, Fernandez-Garcia M, Topisirović L, Golić N, Ruas-Madiedo P. Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. in International Journal of Food Microbiology. 2012;158(2):155-162.
doi:10.1016/j.ijfoodmicro.2012.07.015 .
Živković, Milica, Lopez, Patricia, Strahinić, Ivana, Suarez, Ana, Kojić, Milan, Fernandez-Garcia, Maria, Topisirović, Ljubiša, Golić, Nataša, Ruas-Madiedo, Patricia, "Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics" in International Journal of Food Microbiology, 158, no. 2 (2012):155-162,
https://doi.org/10.1016/j.ijfoodmicro.2012.07.015 . .
7
113
76
112

Surface properties of Lactobacillus and Leuconostoc isolates from homemade cheeses showing auto-aggregation ability

Živković, Milica; Jovčić, Branko; Kojić, Milan; Topisirović, Ljubiša

(Springer, New York, 2010)

TY  - JOUR
AU  - Živković, Milica
AU  - Jovčić, Branko
AU  - Kojić, Milan
AU  - Topisirović, Ljubiša
PY  - 2010
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/442
UR  - http://intor.torlakinstitut.com/handle/123456789/826
AB  - Ten lactobacilli and one leuconostoc showing auto-aggregation ability were isolated from artisanal cheeses. Furthermore, non-aggregation strains were isolated from the same cheese sample, if existed. The analysis of factor(s) possibly involved in auto-aggregation was performed. The pretreatment of cells with proteinase K resulted in the disappearance of auto-aggregation ability. Moreover, cells also lost aggregation ability after three-times, successive washing in distilled water. Testing the ability of strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 and its aggregation-deficient derivative BGSJ2-81 to co-aggregate with Listeria innocua ATCC33090, Escherichia coli ATCC25922 or Salmonella typhimurium TR251 showed that strain BGSJ2-8 co-aggregated with these strains, but derivative BGSJ2-81 was not. However, the treatment of L. paracasei subsp. paracasei BGSJ2-8 with proteinase K prior to co-aggregation tests resulted in losing co-aggregation ability. Surface properties of selected strains were analyzed by MATS (microbial adhesion to solvents) method. It was noticed that the strains with auto-aggregation ability were highly hydrophobic in comparison with aggregation-deficient ones. Comparative analyses of the surface features of strain L. paracasei subsp. paracasei BGSJ2-8 and its derivative BGSJ2-81 revealed notable difference.
PB  - Springer, New York
T2  - European Food Research and Technology
T1  - Surface properties of Lactobacillus and Leuconostoc isolates from homemade cheeses showing auto-aggregation ability
EP  - 931
IS  - 6
SP  - 925
VL  - 231
DO  - 10.1007/s00217-010-1344-1
ER  - 
@article{
author = "Živković, Milica and Jovčić, Branko and Kojić, Milan and Topisirović, Ljubiša",
year = "2010",
abstract = "Ten lactobacilli and one leuconostoc showing auto-aggregation ability were isolated from artisanal cheeses. Furthermore, non-aggregation strains were isolated from the same cheese sample, if existed. The analysis of factor(s) possibly involved in auto-aggregation was performed. The pretreatment of cells with proteinase K resulted in the disappearance of auto-aggregation ability. Moreover, cells also lost aggregation ability after three-times, successive washing in distilled water. Testing the ability of strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 and its aggregation-deficient derivative BGSJ2-81 to co-aggregate with Listeria innocua ATCC33090, Escherichia coli ATCC25922 or Salmonella typhimurium TR251 showed that strain BGSJ2-8 co-aggregated with these strains, but derivative BGSJ2-81 was not. However, the treatment of L. paracasei subsp. paracasei BGSJ2-8 with proteinase K prior to co-aggregation tests resulted in losing co-aggregation ability. Surface properties of selected strains were analyzed by MATS (microbial adhesion to solvents) method. It was noticed that the strains with auto-aggregation ability were highly hydrophobic in comparison with aggregation-deficient ones. Comparative analyses of the surface features of strain L. paracasei subsp. paracasei BGSJ2-8 and its derivative BGSJ2-81 revealed notable difference.",
publisher = "Springer, New York",
journal = "European Food Research and Technology",
title = "Surface properties of Lactobacillus and Leuconostoc isolates from homemade cheeses showing auto-aggregation ability",
pages = "931-925",
number = "6",
volume = "231",
doi = "10.1007/s00217-010-1344-1"
}
Živković, M., Jovčić, B., Kojić, M.,& Topisirović, L.. (2010). Surface properties of Lactobacillus and Leuconostoc isolates from homemade cheeses showing auto-aggregation ability. in European Food Research and Technology
Springer, New York., 231(6), 925-931.
https://doi.org/10.1007/s00217-010-1344-1
Živković M, Jovčić B, Kojić M, Topisirović L. Surface properties of Lactobacillus and Leuconostoc isolates from homemade cheeses showing auto-aggregation ability. in European Food Research and Technology. 2010;231(6):925-931.
doi:10.1007/s00217-010-1344-1 .
Živković, Milica, Jovčić, Branko, Kojić, Milan, Topisirović, Ljubiša, "Surface properties of Lactobacillus and Leuconostoc isolates from homemade cheeses showing auto-aggregation ability" in European Food Research and Technology, 231, no. 6 (2010):925-931,
https://doi.org/10.1007/s00217-010-1344-1 . .
50
24
53