Jovanović, Goran

Link to this page

Authority KeyName Variants
a830eb0b-5b4e-4108-8513-ee73e1f3bd35
  • Jovanović, Goran (1)
Projects

Author's Bibliography

Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU

Gardijan, Lazar; Kojić, Milan; Jovanović, Goran; Malešević, Milka

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Gardijan, Lazar
AU  - Kojić, Milan
AU  - Jovanović, Goran
AU  - Malešević, Milka
PY  - 2023
UR  - http://intor.torlakinstitut.com/handle/123456789/804
AB  - Introduction: Lactolisterin BU (LBU) is a potent bacteriocin derived from Lactococcuslactis subsp. lactis
bv. diacetylactis BGBU1-4. It exhibits antimicrobial properties against Gram-positive food spoilage and
foodborne pathogens. This research aimed to explore the impact of amino acid substitution in LBU on
its antimicrobial activity by utilizing in silico prediction of LBU’ssecondary structure and amino acid substitutions.
Methods: The secondary structure of LBU was predicted using Phyre2 software. Five variants of LBU
were selected and chemically synthesized, along with unaltered LBU and BHT-B,serving as controls. Peptides were twofold diluted in distilled water, resulting in final concentrations ranging from 1000 µg/ml
to 0.5 µg/ml. An agarspot test, employing 5 µl of the dilution, was conducted on three indicatorstrains:
Lactococcus lactis BGMN1-596, Listeria monocytogenes ATCC19111, and Staphylococcus aureus
ATCC25923. The presence of inhibition zones was analyzed after overnight incubation at 37°C (S. aureus)
and 30°C (L. lactis and L. monocytogenes).
Results: Phyre2 analysis unveiled the presence of two α-helices in LBU’s structure. The majority of LBU
variants displayed altered antimicrobial activity, with some changes being genusspecific, potentially attributable to variances in cell wall composition. Some variants completely lost their activity, underscoring the significance of native amino acids or their physicochemical properties in the corresponding
positions within LBU’s structure. Furthermore, it was confirmed that chemically synthesized LBU effectively retains its antimicrobial activity.
Conclusion: Changesin amino acid composition give insight on structure-function relationship of LBU.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
T1  - Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU
EP  - 123
SP  - 123
UR  - https://hdl.handle.net/21.15107/rcub_intor_804
ER  - 
@conference{
author = "Gardijan, Lazar and Kojić, Milan and Jovanović, Goran and Malešević, Milka",
year = "2023",
abstract = "Introduction: Lactolisterin BU (LBU) is a potent bacteriocin derived from Lactococcuslactis subsp. lactis
bv. diacetylactis BGBU1-4. It exhibits antimicrobial properties against Gram-positive food spoilage and
foodborne pathogens. This research aimed to explore the impact of amino acid substitution in LBU on
its antimicrobial activity by utilizing in silico prediction of LBU’ssecondary structure and amino acid substitutions.
Methods: The secondary structure of LBU was predicted using Phyre2 software. Five variants of LBU
were selected and chemically synthesized, along with unaltered LBU and BHT-B,serving as controls. Peptides were twofold diluted in distilled water, resulting in final concentrations ranging from 1000 µg/ml
to 0.5 µg/ml. An agarspot test, employing 5 µl of the dilution, was conducted on three indicatorstrains:
Lactococcus lactis BGMN1-596, Listeria monocytogenes ATCC19111, and Staphylococcus aureus
ATCC25923. The presence of inhibition zones was analyzed after overnight incubation at 37°C (S. aureus)
and 30°C (L. lactis and L. monocytogenes).
Results: Phyre2 analysis unveiled the presence of two α-helices in LBU’s structure. The majority of LBU
variants displayed altered antimicrobial activity, with some changes being genusspecific, potentially attributable to variances in cell wall composition. Some variants completely lost their activity, underscoring the significance of native amino acids or their physicochemical properties in the corresponding
positions within LBU’s structure. Furthermore, it was confirmed that chemically synthesized LBU effectively retains its antimicrobial activity.
Conclusion: Changesin amino acid composition give insight on structure-function relationship of LBU.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia",
title = "Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU",
pages = "123-123",
url = "https://hdl.handle.net/21.15107/rcub_intor_804"
}
Gardijan, L., Kojić, M., Jovanović, G.,& Malešević, M.. (2023). Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 123-123.
https://hdl.handle.net/21.15107/rcub_intor_804
Gardijan L, Kojić M, Jovanović G, Malešević M. Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia. 2023;:123-123.
https://hdl.handle.net/21.15107/rcub_intor_804 .
Gardijan, Lazar, Kojić, Milan, Jovanović, Goran, Malešević, Milka, "Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia (2023):123-123,
https://hdl.handle.net/21.15107/rcub_intor_804 .