Kojić, Milan

Link to this page

Authority KeyName Variants
orcid::0000-0001-5645-750X
  • Kojić, Milan (118)
Projects
Genes and molecular mechanisms promoting probiotic activity of lactic acid bacteria from Western Balkan Izučavanje regulacije ekspresije gena odabranih industrijskih mikroorganizama
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200177 (Immunology Research Centre 'Branislav Janković' Torlak, Belgrade)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200178 (University of Belgrade, Faculty of Biology) Faculty of Medicine of the University of Nis [4]
The electrical breakdown of gases, surface processes and applications Obtaining, physicochemical characterization, analysis and biological activity of pharmacologically active compounds
Molecular characterization of bacteria from genera Bacillus and Pseudomonas as potential agents for biological control Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) Production of new dietetic milk products for risk populations based on qualitative and quantitative analysis of health risk markers in milk consumption
[AIB2010SE-00386] EU project within the VI Frame Program (ACE-ART, ref. CT-2003-506214)
FEDER funds (European Union) [AGL2012-33278] FPI [BES-2010-038270]
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200031 (Scientific Institute of Veterinary Medicine 'Novi Sad', Novi Sad) L'Oreal Foundation
Spanish Ministry of Economy and Competiveness (MINECO) bilateral collaboration project [AIB2010SE-00386]
Collaborative grant scheme program, Innovation Fund of the Republic of Serbia, 50404, 2022-2023 CSK food enrichment, The Netherlands
FEDER European Union [AGL2009-09445] FEMS
FEMS Grant by Federation of European Microbiological Societies [FEMS-RG-2016-0118] FIS
FPI fellowship Synthesis, Quantitative Structure and Activity Relationship, Physico-Chemical Characterisation and Analysis of Pharmacologically Active Substances
Molecular mechanisms of physiological and pharmacological control of inflammation and cancer Cellular and molecular mechanisms of recovery of rats from experimental autoimmune encephalomyelitis

Author's Bibliography

Diphtheria and tetanus vaccines: a historical overview, present achievements, and future directions

Panić, Marko; Prijić, Ivana; Simić, Mihajlo; Ćuruvija, Ivana; Lukić, Ivana; Drgačević, Luka; Kojić, Milan

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Panić, Marko
AU  - Prijić, Ivana
AU  - Simić, Mihajlo
AU  - Ćuruvija, Ivana
AU  - Lukić, Ivana
AU  - Drgačević, Luka
AU  - Kojić, Milan
PY  - 2024
UR  - http://intor.torlakinstitut.com/handle/123456789/880
AB  - Diphtheria and tetanus, once formidable causes of morbidity and mortality worldwide, have seen their threats markedly diminished through the advent and widespread use of vaccines. This review article delves into the historical journey of diphtheria and tetanus vaccines, evaluates their current status in global immunization programs, and explores future perspectives in their evolution and implementation. The inception of diphtheria and tetanus vaccines marked a pivotal shift in infectious disease control. The development of diphtheria toxoid by Emil von Behring in the late 19th century and the subsequent creation of tetanus toxoid in the early 20th century set the stage for large-scale immunization efforts. These efforts were bolstered in the mid-20th century with the integration of these toxoids into combination vaccines, notably the DTP (diphtheria-tetanus-pertussis) vaccine, facilitating broader immunization coverage and enhanced public health outcomes. Currently, the inclusion of diphtheria and tetanus vaccines in national immunization schedules has led to a significant decline in the incidence of these diseases globally. However, challenges remain, including disparities in vaccine coverage and the emergence of non-toxigenic strains causing diphtheria. The review highlights the WHO’s strategies towards achieving higher immunization coverage and the importance of maintaining high vaccination rates to prevent resurgence. Looking forward, the review discusses the ongoing research and development aimed at improving vaccine formulations, reducing adverse reactions, and enhancing the efficacy and durability of protection. Innovations such as nanoparticle vaccines and DNA vaccines are explored as potential avenues for future advancements. Additionally, the review addresses the critical role of global health governance in addressing vaccine hesitancy, improving access in low-resource settings, and coordinating responses to outbreaks. In conclusion, while the battle against diphtheria and tetanus has seen significant victories, continuous efforts in vaccine innovation, policy implementation, and global cooperation are essential to sustain these gains and achieve the ultimate goal of global eradication.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april
T1  - Diphtheria and tetanus vaccines: a historical overview, present achievements, and future directions
EP  - 169
SP  - 169
UR  - https://hdl.handle.net/21.15107/rcub_intor_880
ER  - 
@conference{
author = "Panić, Marko and Prijić, Ivana and Simić, Mihajlo and Ćuruvija, Ivana and Lukić, Ivana and Drgačević, Luka and Kojić, Milan",
year = "2024",
abstract = "Diphtheria and tetanus, once formidable causes of morbidity and mortality worldwide, have seen their threats markedly diminished through the advent and widespread use of vaccines. This review article delves into the historical journey of diphtheria and tetanus vaccines, evaluates their current status in global immunization programs, and explores future perspectives in their evolution and implementation. The inception of diphtheria and tetanus vaccines marked a pivotal shift in infectious disease control. The development of diphtheria toxoid by Emil von Behring in the late 19th century and the subsequent creation of tetanus toxoid in the early 20th century set the stage for large-scale immunization efforts. These efforts were bolstered in the mid-20th century with the integration of these toxoids into combination vaccines, notably the DTP (diphtheria-tetanus-pertussis) vaccine, facilitating broader immunization coverage and enhanced public health outcomes. Currently, the inclusion of diphtheria and tetanus vaccines in national immunization schedules has led to a significant decline in the incidence of these diseases globally. However, challenges remain, including disparities in vaccine coverage and the emergence of non-toxigenic strains causing diphtheria. The review highlights the WHO’s strategies towards achieving higher immunization coverage and the importance of maintaining high vaccination rates to prevent resurgence. Looking forward, the review discusses the ongoing research and development aimed at improving vaccine formulations, reducing adverse reactions, and enhancing the efficacy and durability of protection. Innovations such as nanoparticle vaccines and DNA vaccines are explored as potential avenues for future advancements. Additionally, the review addresses the critical role of global health governance in addressing vaccine hesitancy, improving access in low-resource settings, and coordinating responses to outbreaks. In conclusion, while the battle against diphtheria and tetanus has seen significant victories, continuous efforts in vaccine innovation, policy implementation, and global cooperation are essential to sustain these gains and achieve the ultimate goal of global eradication.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april",
title = "Diphtheria and tetanus vaccines: a historical overview, present achievements, and future directions",
pages = "169-169",
url = "https://hdl.handle.net/21.15107/rcub_intor_880"
}
Panić, M., Prijić, I., Simić, M., Ćuruvija, I., Lukić, I., Drgačević, L.,& Kojić, M.. (2024). Diphtheria and tetanus vaccines: a historical overview, present achievements, and future directions. in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april
Serbian Society for Microbiology., 169-169.
https://hdl.handle.net/21.15107/rcub_intor_880
Panić M, Prijić I, Simić M, Ćuruvija I, Lukić I, Drgačević L, Kojić M. Diphtheria and tetanus vaccines: a historical overview, present achievements, and future directions. in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april. 2024;:169-169.
https://hdl.handle.net/21.15107/rcub_intor_880 .
Panić, Marko, Prijić, Ivana, Simić, Mihajlo, Ćuruvija, Ivana, Lukić, Ivana, Drgačević, Luka, Kojić, Milan, "Diphtheria and tetanus vaccines: a historical overview, present achievements, and future directions" in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april (2024):169-169,
https://hdl.handle.net/21.15107/rcub_intor_880 .

mRNA vaccine manufacturing – challenges in plasmid DNA cloning vector design

Lukić, Ivana; Dragačević, Luka; Panić, Marko; Stamenković, Marina; Kojić, Milan

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Lukić, Ivana
AU  - Dragačević, Luka
AU  - Panić, Marko
AU  - Stamenković, Marina
AU  - Kojić, Milan
PY  - 2024
UR  - http://intor.torlakinstitut.com/handle/123456789/878
AB  - In the post-COVID-19 era, there has been a significant increase in the development of mRNA vaccines not only against various diseases besides SARS-CoV-2, but also to treat cancer and genetic disorders. These vaccines, revolutionizing vaccinology, offer rapid pandemic response, high efficacy, minimal side effects, and cost-effectiveness. Achieving these benefits hinges on seamlessly integrating mRNA production steps, from plasmid DNA cloning to lipid nanoparticle formulation. This overview aims to comprehend or circumvent pitfalls in plasmid DNA cloning, a critical initial step in mRNA vaccine production. The focus is on achieving accurate insert sequence and gene expression, and it highlights the critical role of plasmid DNA design in ensuring vaccine effectiveness. Our research project entitled “Role of macroautophagy in lipid nanoparticle mRNA delivery and adjuvanticity” recognized the significance of this aspect. During our research, we designed a plasmid DNA cloning vector to incorporate the GFP-SARS-CoV-2 Spike gene. The vector was carefully constructed with several key features, including a high-copy plasmid, pUC18/pUC19 vector backbone with a robust T7 promoter, origin of replication, multiple cloning sites, polyadenylation signal, and ampicillin resistance for bacterial selection. Despite careful design, challenges like poly-A tail deletion may arise, prompting the exploration of stable large-size and low-copy vectors, as well as linear and bacteriophage vectors. But, for largescale production and regulatory compliance, vector systems must be scalable and well-documented. Commercial vectors and automated synthesis facilitate gene construction, with artificial intelligence ensuring sequence accuracy. Precision is crucial for complex antigens, as seen in tuberculosis mRNA vaccine development. Addressing these challenges demands a combining of molecular biology techniques, computational tools, and collaboration with experts in microbiology, molecular biology, and vaccine development. The design’s scalability and documentation are vital for large-scale production and regulatory compliance, emphasizing the multifaceted approach required for successful mRNA vaccine development.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april
T1  - mRNA vaccine manufacturing – challenges in plasmid DNA cloning vector design
EP  - 157
SP  - 157
UR  - https://hdl.handle.net/21.15107/rcub_intor_878
ER  - 
@conference{
author = "Lukić, Ivana and Dragačević, Luka and Panić, Marko and Stamenković, Marina and Kojić, Milan",
year = "2024",
abstract = "In the post-COVID-19 era, there has been a significant increase in the development of mRNA vaccines not only against various diseases besides SARS-CoV-2, but also to treat cancer and genetic disorders. These vaccines, revolutionizing vaccinology, offer rapid pandemic response, high efficacy, minimal side effects, and cost-effectiveness. Achieving these benefits hinges on seamlessly integrating mRNA production steps, from plasmid DNA cloning to lipid nanoparticle formulation. This overview aims to comprehend or circumvent pitfalls in plasmid DNA cloning, a critical initial step in mRNA vaccine production. The focus is on achieving accurate insert sequence and gene expression, and it highlights the critical role of plasmid DNA design in ensuring vaccine effectiveness. Our research project entitled “Role of macroautophagy in lipid nanoparticle mRNA delivery and adjuvanticity” recognized the significance of this aspect. During our research, we designed a plasmid DNA cloning vector to incorporate the GFP-SARS-CoV-2 Spike gene. The vector was carefully constructed with several key features, including a high-copy plasmid, pUC18/pUC19 vector backbone with a robust T7 promoter, origin of replication, multiple cloning sites, polyadenylation signal, and ampicillin resistance for bacterial selection. Despite careful design, challenges like poly-A tail deletion may arise, prompting the exploration of stable large-size and low-copy vectors, as well as linear and bacteriophage vectors. But, for largescale production and regulatory compliance, vector systems must be scalable and well-documented. Commercial vectors and automated synthesis facilitate gene construction, with artificial intelligence ensuring sequence accuracy. Precision is crucial for complex antigens, as seen in tuberculosis mRNA vaccine development. Addressing these challenges demands a combining of molecular biology techniques, computational tools, and collaboration with experts in microbiology, molecular biology, and vaccine development. The design’s scalability and documentation are vital for large-scale production and regulatory compliance, emphasizing the multifaceted approach required for successful mRNA vaccine development.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april",
title = "mRNA vaccine manufacturing – challenges in plasmid DNA cloning vector design",
pages = "157-157",
url = "https://hdl.handle.net/21.15107/rcub_intor_878"
}
Lukić, I., Dragačević, L., Panić, M., Stamenković, M.,& Kojić, M.. (2024). mRNA vaccine manufacturing – challenges in plasmid DNA cloning vector design. in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april
Serbian Society for Microbiology., 157-157.
https://hdl.handle.net/21.15107/rcub_intor_878
Lukić I, Dragačević L, Panić M, Stamenković M, Kojić M. mRNA vaccine manufacturing – challenges in plasmid DNA cloning vector design. in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april. 2024;:157-157.
https://hdl.handle.net/21.15107/rcub_intor_878 .
Lukić, Ivana, Dragačević, Luka, Panić, Marko, Stamenković, Marina, Kojić, Milan, "mRNA vaccine manufacturing – challenges in plasmid DNA cloning vector design" in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april (2024):157-157,
https://hdl.handle.net/21.15107/rcub_intor_878 .

Description of a new potential aggregation factor from the Streptococcus thermophilus genome

Tsibulskaya, Darya; Blagojević, Veljko; Terzić-Vidojević, Amarela; Lukić, Ivana; Vasić, Marko; Dragačević, Luka; Kojić, Milan

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Tsibulskaya, Darya
AU  - Blagojević, Veljko
AU  - Terzić-Vidojević, Amarela
AU  - Lukić, Ivana
AU  - Vasić, Marko
AU  - Dragačević, Luka
AU  - Kojić, Milan
PY  - 2024
UR  - http://intor.torlakinstitut.com/handle/123456789/875
AB  - Autoaggregation, the ability to self-aggregate, is widespread among both Gram-positive and Gram-negative bacteria. The functional role of aggregation is not fully understood, but it is believed to be involved in the adaptation of bacteria to environmental conditions (PMID: 31294207). One interesting class of compounds responsible for the aggregation of lactic acid bacteria is aggregation factors—surface high-molecular-weight proteins rich in threonine and lysine (PMID: 30027759). Recently, our research group discovered a new strain of Streptococcus thermophilus in the mountainous regions of Serbia, exhibiting an aggregation phenotype. Aggregation phenotype was confirmed visually and using microscopy. Complete genome of Agg+ strain was sequenced using NGS and a gene encoding a potential aggregation factor, which was named aggS was identified. The predicted threonine (12.5%) and lysine (10.5%) rich protein contains 2367 amino acids, with an average molecular weight of 255986.63 Da. AggS also contains two cysteine residues, whereas previously well-described aggregation factors of this type did not contain any cysteine residues. The predicted protein includes an N-terminal YSIRK-like signal sequence and an LPXTG cell wall anchor domain. It has 6 Mucin binding domain repeats alternating with 6 Mub B2-like domain repeats. Additionally, we found a region resembling an ice-binding domain. Given that these bacteria endure prolonged periods of low temperatures, it can be speculated that this surface membrane protein also helps the bacteria withstand freezing. The fact that the alignment using BLASTp revealed AggS to be most closely related to an uncharacterised protein from the genome of Lactococcus garvieae, along with the discovery of a transposase gene sequence upstream of the gene, suggests that the aggregation factor was likely acquired through horizontal gene transfer. We plan to clone it into a shuttle vector and investigate the aggregation phenotype using a heterologous expression system in Lactococcus lactis, as well as explore its other functions.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april
T1  - Description of a new potential aggregation factor from the Streptococcus thermophilus genome
EP  - 110
SP  - 110
UR  - https://hdl.handle.net/21.15107/rcub_intor_875
ER  - 
@conference{
author = "Tsibulskaya, Darya and Blagojević, Veljko and Terzić-Vidojević, Amarela and Lukić, Ivana and Vasić, Marko and Dragačević, Luka and Kojić, Milan",
year = "2024",
abstract = "Autoaggregation, the ability to self-aggregate, is widespread among both Gram-positive and Gram-negative bacteria. The functional role of aggregation is not fully understood, but it is believed to be involved in the adaptation of bacteria to environmental conditions (PMID: 31294207). One interesting class of compounds responsible for the aggregation of lactic acid bacteria is aggregation factors—surface high-molecular-weight proteins rich in threonine and lysine (PMID: 30027759). Recently, our research group discovered a new strain of Streptococcus thermophilus in the mountainous regions of Serbia, exhibiting an aggregation phenotype. Aggregation phenotype was confirmed visually and using microscopy. Complete genome of Agg+ strain was sequenced using NGS and a gene encoding a potential aggregation factor, which was named aggS was identified. The predicted threonine (12.5%) and lysine (10.5%) rich protein contains 2367 amino acids, with an average molecular weight of 255986.63 Da. AggS also contains two cysteine residues, whereas previously well-described aggregation factors of this type did not contain any cysteine residues. The predicted protein includes an N-terminal YSIRK-like signal sequence and an LPXTG cell wall anchor domain. It has 6 Mucin binding domain repeats alternating with 6 Mub B2-like domain repeats. Additionally, we found a region resembling an ice-binding domain. Given that these bacteria endure prolonged periods of low temperatures, it can be speculated that this surface membrane protein also helps the bacteria withstand freezing. The fact that the alignment using BLASTp revealed AggS to be most closely related to an uncharacterised protein from the genome of Lactococcus garvieae, along with the discovery of a transposase gene sequence upstream of the gene, suggests that the aggregation factor was likely acquired through horizontal gene transfer. We plan to clone it into a shuttle vector and investigate the aggregation phenotype using a heterologous expression system in Lactococcus lactis, as well as explore its other functions.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april",
title = "Description of a new potential aggregation factor from the Streptococcus thermophilus genome",
pages = "110-110",
url = "https://hdl.handle.net/21.15107/rcub_intor_875"
}
Tsibulskaya, D., Blagojević, V., Terzić-Vidojević, A., Lukić, I., Vasić, M., Dragačević, L.,& Kojić, M.. (2024). Description of a new potential aggregation factor from the Streptococcus thermophilus genome. in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april
Serbian Society for Microbiology., 110-110.
https://hdl.handle.net/21.15107/rcub_intor_875
Tsibulskaya D, Blagojević V, Terzić-Vidojević A, Lukić I, Vasić M, Dragačević L, Kojić M. Description of a new potential aggregation factor from the Streptococcus thermophilus genome. in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april. 2024;:110-110.
https://hdl.handle.net/21.15107/rcub_intor_875 .
Tsibulskaya, Darya, Blagojević, Veljko, Terzić-Vidojević, Amarela, Lukić, Ivana, Vasić, Marko, Dragačević, Luka, Kojić, Milan, "Description of a new potential aggregation factor from the Streptococcus thermophilus genome" in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april (2024):110-110,
https://hdl.handle.net/21.15107/rcub_intor_875 .

Exploring E. coli-based expression of genetically inactivated tetanus toxin for vaccine development

Panić, Marko; Prijić, Ivana; Simić, Mihajlo; Lukić, Ivana; Petrušić, Marija; Živković, Irena; Kojić, Milan

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Panić, Marko
AU  - Prijić, Ivana
AU  - Simić, Mihajlo
AU  - Lukić, Ivana
AU  - Petrušić, Marija
AU  - Živković, Irena
AU  - Kojić, Milan
PY  - 2024
UR  - http://intor.torlakinstitut.com/handle/123456789/876
AB  - Tetanus toxin, a highly potent neurotoxin produced by Clostridium tetani, is the primary agent responsible for causing tetanus. This serious, potentially fatal disease can be effectively prevented through vaccination. Thanks to successful vaccination campaigns, tetanus has become exceedingly rare in both developed and most developing countries. However, the widespread presence of C. tetani spores in the environment means that tetanus cannot be completely eradicated, underscoring the ongoing need for vaccination. Traditionally, tetanus vaccines are produced by cultivating C. tetani, extracting a crude form of the tetanus toxin, and then chemically inactivating it for use in immunization. This method has proven clinically effective and is in widespread use. A challenge with this approach, however, is that the vaccine contains hundreds of various C. tetani proteins, with the active component making up only a variable and small fraction of the overall vaccine mass. To improve the current tetanus vaccine, there is potential in the recombinant production of a genetically inactivated tetanus vaccine. Prior studies have demonstrated the feasibility of engineering the full-length tetanus toxin in E. coli, and our current work builds on this foundation. We have successfully cloned the complete tetanus toxin open reading frame into the pMAL expression vector. This step was followed by the creation of a genetically inactivated protein, achieved through standard site-directed mutagenesis which altered 8 critical amino acid residues. These mutations have been confirmed via sequencing, ensuring that the toxin is genetically inactivated and thus does not require chemical inactivation for vaccine production. Our present focus is on optimizing the expression of this protein in E. coli. Following this, we intend to conduct thorough assessments of the biochemical and immunological properties of the recombinant tetanus toxin. This research represents a promising avenue towards enhancing the efficacy and specificity of tetanus vaccines, potentially improving global health outcomes.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april
T1  - Exploring E. coli-based expression of genetically inactivated tetanus toxin for vaccine development
EP  - 113
SP  - 113
UR  - https://hdl.handle.net/21.15107/rcub_intor_876
ER  - 
@conference{
author = "Panić, Marko and Prijić, Ivana and Simić, Mihajlo and Lukić, Ivana and Petrušić, Marija and Živković, Irena and Kojić, Milan",
year = "2024",
abstract = "Tetanus toxin, a highly potent neurotoxin produced by Clostridium tetani, is the primary agent responsible for causing tetanus. This serious, potentially fatal disease can be effectively prevented through vaccination. Thanks to successful vaccination campaigns, tetanus has become exceedingly rare in both developed and most developing countries. However, the widespread presence of C. tetani spores in the environment means that tetanus cannot be completely eradicated, underscoring the ongoing need for vaccination. Traditionally, tetanus vaccines are produced by cultivating C. tetani, extracting a crude form of the tetanus toxin, and then chemically inactivating it for use in immunization. This method has proven clinically effective and is in widespread use. A challenge with this approach, however, is that the vaccine contains hundreds of various C. tetani proteins, with the active component making up only a variable and small fraction of the overall vaccine mass. To improve the current tetanus vaccine, there is potential in the recombinant production of a genetically inactivated tetanus vaccine. Prior studies have demonstrated the feasibility of engineering the full-length tetanus toxin in E. coli, and our current work builds on this foundation. We have successfully cloned the complete tetanus toxin open reading frame into the pMAL expression vector. This step was followed by the creation of a genetically inactivated protein, achieved through standard site-directed mutagenesis which altered 8 critical amino acid residues. These mutations have been confirmed via sequencing, ensuring that the toxin is genetically inactivated and thus does not require chemical inactivation for vaccine production. Our present focus is on optimizing the expression of this protein in E. coli. Following this, we intend to conduct thorough assessments of the biochemical and immunological properties of the recombinant tetanus toxin. This research represents a promising avenue towards enhancing the efficacy and specificity of tetanus vaccines, potentially improving global health outcomes.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april",
title = "Exploring E. coli-based expression of genetically inactivated tetanus toxin for vaccine development",
pages = "113-113",
url = "https://hdl.handle.net/21.15107/rcub_intor_876"
}
Panić, M., Prijić, I., Simić, M., Lukić, I., Petrušić, M., Živković, I.,& Kojić, M.. (2024). Exploring E. coli-based expression of genetically inactivated tetanus toxin for vaccine development. in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april
Serbian Society for Microbiology., 113-113.
https://hdl.handle.net/21.15107/rcub_intor_876
Panić M, Prijić I, Simić M, Lukić I, Petrušić M, Živković I, Kojić M. Exploring E. coli-based expression of genetically inactivated tetanus toxin for vaccine development. in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april. 2024;:113-113.
https://hdl.handle.net/21.15107/rcub_intor_876 .
Panić, Marko, Prijić, Ivana, Simić, Mihajlo, Lukić, Ivana, Petrušić, Marija, Živković, Irena, Kojić, Milan, "Exploring E. coli-based expression of genetically inactivated tetanus toxin for vaccine development" in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april (2024):113-113,
https://hdl.handle.net/21.15107/rcub_intor_876 .

Inactivation of diphtheria toxin by site-directed mutagenesis

Prijić, Ivana; Panić, Marko; Simić, Mihajlo; Blagojević, Veljko; Ćuruvija, Ivana; Lukić, Ivana; Dragačević, Luka; Kojić, Milan

(Serbian Society for Microbiology, 2024)

TY  - CONF
AU  - Prijić, Ivana
AU  - Panić, Marko
AU  - Simić, Mihajlo
AU  - Blagojević, Veljko
AU  - Ćuruvija, Ivana
AU  - Lukić, Ivana
AU  - Dragačević, Luka
AU  - Kojić, Milan
PY  - 2024
UR  - http://intor.torlakinstitut.com/handle/123456789/877
AB  - Diphtheria toxin is a single polypeptide chain produced by toxigenic strains of Corynebacterium diphtheriae that causes the disease diphtheria in humans by gaining entry into the cytoplasm of cells and inhibiting protein synthesis. Formaldehyde (chemical) detoxification converts diphtheria toxin into toxoid, which is used in diphtheria vaccine production. Recombinant, genetically detoxified diphtheria toxin is superior in terms of safety and purity, but it has still not found its application in recombinant diphtheria vaccine production. Both chemically and genetically inactivated forms of the diphtheria toxin have proven effective as protein carriers in conjugate vaccines. The goal of this study was to create a plasmid construct which can be used to express a genetically inactivated diphtheria toxin. Gene coding for diphtheria toxin was cloned into pMALHisEk expression vector and introduced into DH5α competent Escherichia coli cells. Three site-directed point mutations, which led to three amino acid substitutions (G52E-substitutes glycine with glutamic acid, G79D- substitutes glycine with aspartic acid, E148D- substitutes glutamic acid with aspartic acid) were conducted. A single G52E amino acid substitution is responsible for the loss of the enzymatic activity of the diphtheria toxin. G79D is recognized as a good candidate site for combining with other mutations in vaccine development and E148D may be a good candidate as carrier protein because it could reduce both the stability of NAD binding and catalytic activity of the enzyme. Each individual mutation is sufficient for toxin inactivation, but together they ensure non-toxicity, preventing reversion to the wild-type sequence. All mutations were confirmed by DNA sequencing. Recombinant diphtheria toxoid could serve as a potential vaccine epitope or protein carrier for conjugate vaccines. Further optimization of recombinant protein expression in Escherichia coli should provide sufficient quantities of soluble recombinant protein for further testing of its safety, immunogenicity and protection.
PB  - Serbian Society for Microbiology
C3  - XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april
T1  - Inactivation of diphtheria toxin by site-directed mutagenesis
EP  - 115
SP  - 115
UR  - https://hdl.handle.net/21.15107/rcub_intor_877
ER  - 
@conference{
author = "Prijić, Ivana and Panić, Marko and Simić, Mihajlo and Blagojević, Veljko and Ćuruvija, Ivana and Lukić, Ivana and Dragačević, Luka and Kojić, Milan",
year = "2024",
abstract = "Diphtheria toxin is a single polypeptide chain produced by toxigenic strains of Corynebacterium diphtheriae that causes the disease diphtheria in humans by gaining entry into the cytoplasm of cells and inhibiting protein synthesis. Formaldehyde (chemical) detoxification converts diphtheria toxin into toxoid, which is used in diphtheria vaccine production. Recombinant, genetically detoxified diphtheria toxin is superior in terms of safety and purity, but it has still not found its application in recombinant diphtheria vaccine production. Both chemically and genetically inactivated forms of the diphtheria toxin have proven effective as protein carriers in conjugate vaccines. The goal of this study was to create a plasmid construct which can be used to express a genetically inactivated diphtheria toxin. Gene coding for diphtheria toxin was cloned into pMALHisEk expression vector and introduced into DH5α competent Escherichia coli cells. Three site-directed point mutations, which led to three amino acid substitutions (G52E-substitutes glycine with glutamic acid, G79D- substitutes glycine with aspartic acid, E148D- substitutes glutamic acid with aspartic acid) were conducted. A single G52E amino acid substitution is responsible for the loss of the enzymatic activity of the diphtheria toxin. G79D is recognized as a good candidate site for combining with other mutations in vaccine development and E148D may be a good candidate as carrier protein because it could reduce both the stability of NAD binding and catalytic activity of the enzyme. Each individual mutation is sufficient for toxin inactivation, but together they ensure non-toxicity, preventing reversion to the wild-type sequence. All mutations were confirmed by DNA sequencing. Recombinant diphtheria toxoid could serve as a potential vaccine epitope or protein carrier for conjugate vaccines. Further optimization of recombinant protein expression in Escherichia coli should provide sufficient quantities of soluble recombinant protein for further testing of its safety, immunogenicity and protection.",
publisher = "Serbian Society for Microbiology",
journal = "XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april",
title = "Inactivation of diphtheria toxin by site-directed mutagenesis",
pages = "115-115",
url = "https://hdl.handle.net/21.15107/rcub_intor_877"
}
Prijić, I., Panić, M., Simić, M., Blagojević, V., Ćuruvija, I., Lukić, I., Dragačević, L.,& Kojić, M.. (2024). Inactivation of diphtheria toxin by site-directed mutagenesis. in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april
Serbian Society for Microbiology., 115-115.
https://hdl.handle.net/21.15107/rcub_intor_877
Prijić I, Panić M, Simić M, Blagojević V, Ćuruvija I, Lukić I, Dragačević L, Kojić M. Inactivation of diphtheria toxin by site-directed mutagenesis. in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april. 2024;:115-115.
https://hdl.handle.net/21.15107/rcub_intor_877 .
Prijić, Ivana, Panić, Marko, Simić, Mihajlo, Blagojević, Veljko, Ćuruvija, Ivana, Lukić, Ivana, Dragačević, Luka, Kojić, Milan, "Inactivation of diphtheria toxin by site-directed mutagenesis" in XIII Congress of microbiologists of Serbia with international participation, Mikromed regio 5, From biotechnology to human and planetary health, 4-6 april (2024):115-115,
https://hdl.handle.net/21.15107/rcub_intor_877 .

Improvement of fruit juice quality: novel endo-polygalacturonase II from Aspergillus tubingensis FAT 43 for enhanced liquefaction, clarification, and antioxidant potential

Pavlović, Marija; Margetić, Aleksandra; Leonardi, Adrijana; Križaj, Igor; Kojić, Milan; Vujčić, Zoran; Šokarda Slavić, Marinela

(Royal Society of Chemistry, 2024)

TY  - JOUR
AU  - Pavlović, Marija
AU  - Margetić, Aleksandra
AU  - Leonardi, Adrijana
AU  - Križaj, Igor
AU  - Kojić, Milan
AU  - Vujčić, Zoran
AU  - Šokarda Slavić, Marinela
PY  - 2024
UR  - http://intor.torlakinstitut.com/handle/123456789/863
AB  - This study focuses on the isolation, purification, and characterisation of endo-polygalacturonase II from Aspergillus tubingensis FAT43, particularly emphasising its potential applications in the fruit juice industry. A comprehensive screening test revealed the temporal dynamics of endo-polygalacturonase production during a 96-hour fermentation process. The purification process, involving ammonium sulfate and ethanol precipitation followed by ion-exchange chromatography, resulted in a 3.3-fold purification of PG II with a yield of 16% and a specific activity of 6001.67 U mg−1. Molecular analysis confirmed the identity of PG II, its gene (pgaII), and a high degree of sequence identity with Aspergillus tubingensis in the SWISS-PROT database. The optimal pH for PG II activity was 3.5–4.5, with robust stability across a broad pH spectrum (3–7). The enzyme exhibited optimal temperature activity at 45 °C, with a retention of 90% activity at 50 °C. The calculated activation energy for PG II was 62.1 kJ mol−1, indicating good stability. Inactivation kinetics revealed a half-life of 13.7 h at 40 °C, 5.4 h at 50 °C, and 0.85 h at 60 °C, with an activation energy of denaturation of 32.8 kJ mol−1. Compared to literature-reported PGs, PG II from A. tubingensis FAT43 demonstrated superior thermal stability. Hydrolysis experiments on different pectins revealed the highest specificity for non-methylated substrates (polygalacturonic acid). In fruit juice processing, PG II significantly increased juice yield and clarity, with the highest impact observed in strawberry juice. Antioxidant activity assays indicated enhanced antioxidant potential in enzyme-treated juices, especially strawberry, quince, and apple juices. The study highlights PG II's potential as an industrially valuable enzyme for fruit juice processing, offering improved thermostability and versatility across various fruit types.
PB  - Royal Society of Chemistry
T2  - Food & Function
T1  - Improvement of fruit juice quality: novel endo-polygalacturonase II from Aspergillus tubingensis FAT 43 for enhanced liquefaction, clarification, and antioxidant potential
DO  - 10.1039/D3FO05297D
ER  - 
@article{
author = "Pavlović, Marija and Margetić, Aleksandra and Leonardi, Adrijana and Križaj, Igor and Kojić, Milan and Vujčić, Zoran and Šokarda Slavić, Marinela",
year = "2024",
abstract = "This study focuses on the isolation, purification, and characterisation of endo-polygalacturonase II from Aspergillus tubingensis FAT43, particularly emphasising its potential applications in the fruit juice industry. A comprehensive screening test revealed the temporal dynamics of endo-polygalacturonase production during a 96-hour fermentation process. The purification process, involving ammonium sulfate and ethanol precipitation followed by ion-exchange chromatography, resulted in a 3.3-fold purification of PG II with a yield of 16% and a specific activity of 6001.67 U mg−1. Molecular analysis confirmed the identity of PG II, its gene (pgaII), and a high degree of sequence identity with Aspergillus tubingensis in the SWISS-PROT database. The optimal pH for PG II activity was 3.5–4.5, with robust stability across a broad pH spectrum (3–7). The enzyme exhibited optimal temperature activity at 45 °C, with a retention of 90% activity at 50 °C. The calculated activation energy for PG II was 62.1 kJ mol−1, indicating good stability. Inactivation kinetics revealed a half-life of 13.7 h at 40 °C, 5.4 h at 50 °C, and 0.85 h at 60 °C, with an activation energy of denaturation of 32.8 kJ mol−1. Compared to literature-reported PGs, PG II from A. tubingensis FAT43 demonstrated superior thermal stability. Hydrolysis experiments on different pectins revealed the highest specificity for non-methylated substrates (polygalacturonic acid). In fruit juice processing, PG II significantly increased juice yield and clarity, with the highest impact observed in strawberry juice. Antioxidant activity assays indicated enhanced antioxidant potential in enzyme-treated juices, especially strawberry, quince, and apple juices. The study highlights PG II's potential as an industrially valuable enzyme for fruit juice processing, offering improved thermostability and versatility across various fruit types.",
publisher = "Royal Society of Chemistry",
journal = "Food & Function",
title = "Improvement of fruit juice quality: novel endo-polygalacturonase II from Aspergillus tubingensis FAT 43 for enhanced liquefaction, clarification, and antioxidant potential",
doi = "10.1039/D3FO05297D"
}
Pavlović, M., Margetić, A., Leonardi, A., Križaj, I., Kojić, M., Vujčić, Z.,& Šokarda Slavić, M.. (2024). Improvement of fruit juice quality: novel endo-polygalacturonase II from Aspergillus tubingensis FAT 43 for enhanced liquefaction, clarification, and antioxidant potential. in Food & Function
Royal Society of Chemistry..
https://doi.org/10.1039/D3FO05297D
Pavlović M, Margetić A, Leonardi A, Križaj I, Kojić M, Vujčić Z, Šokarda Slavić M. Improvement of fruit juice quality: novel endo-polygalacturonase II from Aspergillus tubingensis FAT 43 for enhanced liquefaction, clarification, and antioxidant potential. in Food & Function. 2024;.
doi:10.1039/D3FO05297D .
Pavlović, Marija, Margetić, Aleksandra, Leonardi, Adrijana, Križaj, Igor, Kojić, Milan, Vujčić, Zoran, Šokarda Slavić, Marinela, "Improvement of fruit juice quality: novel endo-polygalacturonase II from Aspergillus tubingensis FAT 43 for enhanced liquefaction, clarification, and antioxidant potential" in Food & Function (2024),
https://doi.org/10.1039/D3FO05297D . .
1

A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo

Ćurčić, Jovana; Dinić, Miroslav; Novović, Katarina; Vasiljević, Zorica; Kojić, Milan; Jovčić, Branko; Malešević, Milka

(2024)

TY  - JOUR
AU  - Ćurčić, Jovana
AU  - Dinić, Miroslav
AU  - Novović, Katarina
AU  - Vasiljević, Zorica
AU  - Kojić, Milan
AU  - Jovčić, Branko
AU  - Malešević, Milka
PY  - 2024
UR  - http://intor.torlakinstitut.com/handle/123456789/864
AB  - Infections caused by multidrug-resistant pathogens are one of the biggest challenges facing the healthcare system today. Quorum quenching (QQ) enzymes have the potential to be used as innovative enzyme-based antivirulence therapeutics to combat infections caused by multidrug-resistant pathogens. The main objective of this research was to describe the novel YtnP lactonase derived from the clinical isolate Stenotrophomonas maltophilia and to investigate its antivirulence potential against multidrug-resistant Pseudomonas aeruginosa MMA83. YtnP lactonase, the QQ enzyme, belongs to the family of metallo-β-lactamases. The recombinant enzyme has several advantageous biotechnological properties, such as high thermostability, activity in a wide pH range, and no cytotoxic effect. High-performance liquid chromatography analysis revealed the activity of recombinant YtnP lactonase toward a wide range of N-acyl-homoserine lactones (AHLs), quorum sensing signaling molecules, with a higher preference for long-chain AHLs. Recombinant YtnP lactonase was shown to inhibit P. aeruginosa MMA83 biofilm formation, induce biofilm decomposition, and reduce extracellular virulence factors production. Moreover, the lifespan of MMA83-infected Caenorhabditis elegans was prolonged with YtnP lactonase treatment. YtnP lactonase showed synergistic inhibitory activity in combination with gentamicin and acted additively with meropenem against MMA83. The described properties make YtnP lactonase a promising therapeutic candidate for the development of next-generation antivirulence agents.
T2  - International Journal of Biological Macromolecules
T1  - A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo
SP  - 130421
DO  - 10.1016/j.ijbiomac.2024.130421
ER  - 
@article{
author = "Ćurčić, Jovana and Dinić, Miroslav and Novović, Katarina and Vasiljević, Zorica and Kojić, Milan and Jovčić, Branko and Malešević, Milka",
year = "2024",
abstract = "Infections caused by multidrug-resistant pathogens are one of the biggest challenges facing the healthcare system today. Quorum quenching (QQ) enzymes have the potential to be used as innovative enzyme-based antivirulence therapeutics to combat infections caused by multidrug-resistant pathogens. The main objective of this research was to describe the novel YtnP lactonase derived from the clinical isolate Stenotrophomonas maltophilia and to investigate its antivirulence potential against multidrug-resistant Pseudomonas aeruginosa MMA83. YtnP lactonase, the QQ enzyme, belongs to the family of metallo-β-lactamases. The recombinant enzyme has several advantageous biotechnological properties, such as high thermostability, activity in a wide pH range, and no cytotoxic effect. High-performance liquid chromatography analysis revealed the activity of recombinant YtnP lactonase toward a wide range of N-acyl-homoserine lactones (AHLs), quorum sensing signaling molecules, with a higher preference for long-chain AHLs. Recombinant YtnP lactonase was shown to inhibit P. aeruginosa MMA83 biofilm formation, induce biofilm decomposition, and reduce extracellular virulence factors production. Moreover, the lifespan of MMA83-infected Caenorhabditis elegans was prolonged with YtnP lactonase treatment. YtnP lactonase showed synergistic inhibitory activity in combination with gentamicin and acted additively with meropenem against MMA83. The described properties make YtnP lactonase a promising therapeutic candidate for the development of next-generation antivirulence agents.",
journal = "International Journal of Biological Macromolecules",
title = "A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo",
pages = "130421",
doi = "10.1016/j.ijbiomac.2024.130421"
}
Ćurčić, J., Dinić, M., Novović, K., Vasiljević, Z., Kojić, M., Jovčić, B.,& Malešević, M.. (2024). A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo. in International Journal of Biological Macromolecules, 130421.
https://doi.org/10.1016/j.ijbiomac.2024.130421
Ćurčić J, Dinić M, Novović K, Vasiljević Z, Kojić M, Jovčić B, Malešević M. A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo. in International Journal of Biological Macromolecules. 2024;:130421.
doi:10.1016/j.ijbiomac.2024.130421 .
Ćurčić, Jovana, Dinić, Miroslav, Novović, Katarina, Vasiljević, Zorica, Kojić, Milan, Jovčić, Branko, Malešević, Milka, "A novel thermostable YtnP lactonase from Stenotrophomonas maltophilia inhibits Pseudomonas aeruginosa virulence in vitro and in vivo" in International Journal of Biological Macromolecules (2024):130421,
https://doi.org/10.1016/j.ijbiomac.2024.130421 . .

A novel YtnP lactonase reduces the expression of p. aeruginosa MMA83 quorum sensing andvirulence factors gene expression

Ćurčić, Jovana; Jakovljević, Stefan; Novović, Katarina; Vasiljević, Zorica; Kojić, Milan; Jovčić, Branko; Malešević, Milka

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Ćurčić, Jovana
AU  - Jakovljević, Stefan
AU  - Novović, Katarina
AU  - Vasiljević, Zorica
AU  - Kojić, Milan
AU  - Jovčić, Branko
AU  - Malešević, Milka
PY  - 2023
UR  - http://intor.torlakinstitut.com/handle/123456789/803
AB  - Introduction: Quorum quenching (QQ) isthe enzymatic degradation of cell-to-cellsignaling molecules.
In this study, the potential of the novel YtnP lactonase, the quorum quenching enzyme derived from S.
maltophilia, to reduce P. aeruginosa quorum sensing and virulence factor gene expression was investigated.
Methods: MMA83 culture (adjusted to 1.5x105 CFU/ml) was treated with recombinant YtnP lactonase
(final concentration 50 μg/ml) at 37°C for 12 hours under aeration. RNA isolation of the treated and untreated MMA83 culture was performed using the RNeasy Mini Kit (Qiagen, Germany) according to the
protocol. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR), was used to analyze
the effect ofYtnP lactonase on the relative mRNA levels of the LasI/LasR, RhiI/RhiR, and PQS signaling network genes of P. aeruginosa MMA83 and virulence factor genes. The rpsL was used as an endogenous
control to normalize obtained data following the 2-ΔΔCt method.
Results: The QS genes belonging to three QS networks – LasI/LasR, RhiI/RhiR, and PQS of P. aeruginosa
MMA83 treated with YtnP lactonase were significantly downregulated. The RT -qPCR results show that
treatment with YtnP-lactonase decreased the relative mRNA levels of genes involved in the production
of elastase (lasB approximately 2-fold), alginate (algK approximately 2.2-fold), pyocyanin (phzM approximately 3.5-fold), pyoverdin (pvdS approximately 2-fold), and rhamnolipid (rhlC approximately 4-fold).
These results suggest that YtnP lactonase exerts an antivirulence effect at the transcription level.
Conclusion: YtnP lactonase, a quorum quenching (QQ) enzyme, has the potential to be used as an innovative enzyme-based antivirulence therapeutic to combat infections caused by P. aeruginosa.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
T1  - A novel YtnP lactonase reduces the expression of p. aeruginosa MMA83 quorum sensing andvirulence factors gene expression
EP  - 121
SP  - 121
UR  - https://hdl.handle.net/21.15107/rcub_intor_803
ER  - 
@conference{
author = "Ćurčić, Jovana and Jakovljević, Stefan and Novović, Katarina and Vasiljević, Zorica and Kojić, Milan and Jovčić, Branko and Malešević, Milka",
year = "2023",
abstract = "Introduction: Quorum quenching (QQ) isthe enzymatic degradation of cell-to-cellsignaling molecules.
In this study, the potential of the novel YtnP lactonase, the quorum quenching enzyme derived from S.
maltophilia, to reduce P. aeruginosa quorum sensing and virulence factor gene expression was investigated.
Methods: MMA83 culture (adjusted to 1.5x105 CFU/ml) was treated with recombinant YtnP lactonase
(final concentration 50 μg/ml) at 37°C for 12 hours under aeration. RNA isolation of the treated and untreated MMA83 culture was performed using the RNeasy Mini Kit (Qiagen, Germany) according to the
protocol. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR), was used to analyze
the effect ofYtnP lactonase on the relative mRNA levels of the LasI/LasR, RhiI/RhiR, and PQS signaling network genes of P. aeruginosa MMA83 and virulence factor genes. The rpsL was used as an endogenous
control to normalize obtained data following the 2-ΔΔCt method.
Results: The QS genes belonging to three QS networks – LasI/LasR, RhiI/RhiR, and PQS of P. aeruginosa
MMA83 treated with YtnP lactonase were significantly downregulated. The RT -qPCR results show that
treatment with YtnP-lactonase decreased the relative mRNA levels of genes involved in the production
of elastase (lasB approximately 2-fold), alginate (algK approximately 2.2-fold), pyocyanin (phzM approximately 3.5-fold), pyoverdin (pvdS approximately 2-fold), and rhamnolipid (rhlC approximately 4-fold).
These results suggest that YtnP lactonase exerts an antivirulence effect at the transcription level.
Conclusion: YtnP lactonase, a quorum quenching (QQ) enzyme, has the potential to be used as an innovative enzyme-based antivirulence therapeutic to combat infections caused by P. aeruginosa.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia",
title = "A novel YtnP lactonase reduces the expression of p. aeruginosa MMA83 quorum sensing andvirulence factors gene expression",
pages = "121-121",
url = "https://hdl.handle.net/21.15107/rcub_intor_803"
}
Ćurčić, J., Jakovljević, S., Novović, K., Vasiljević, Z., Kojić, M., Jovčić, B.,& Malešević, M.. (2023). A novel YtnP lactonase reduces the expression of p. aeruginosa MMA83 quorum sensing andvirulence factors gene expression. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 121-121.
https://hdl.handle.net/21.15107/rcub_intor_803
Ćurčić J, Jakovljević S, Novović K, Vasiljević Z, Kojić M, Jovčić B, Malešević M. A novel YtnP lactonase reduces the expression of p. aeruginosa MMA83 quorum sensing andvirulence factors gene expression. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia. 2023;:121-121.
https://hdl.handle.net/21.15107/rcub_intor_803 .
Ćurčić, Jovana, Jakovljević, Stefan, Novović, Katarina, Vasiljević, Zorica, Kojić, Milan, Jovčić, Branko, Malešević, Milka, "A novel YtnP lactonase reduces the expression of p. aeruginosa MMA83 quorum sensing andvirulence factors gene expression" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia (2023):121-121,
https://hdl.handle.net/21.15107/rcub_intor_803 .

Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU

Gardijan, Lazar; Kojić, Milan; Jovanović, Goran; Malešević, Milka

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Gardijan, Lazar
AU  - Kojić, Milan
AU  - Jovanović, Goran
AU  - Malešević, Milka
PY  - 2023
UR  - http://intor.torlakinstitut.com/handle/123456789/804
AB  - Introduction: Lactolisterin BU (LBU) is a potent bacteriocin derived from Lactococcuslactis subsp. lactis
bv. diacetylactis BGBU1-4. It exhibits antimicrobial properties against Gram-positive food spoilage and
foodborne pathogens. This research aimed to explore the impact of amino acid substitution in LBU on
its antimicrobial activity by utilizing in silico prediction of LBU’ssecondary structure and amino acid substitutions.
Methods: The secondary structure of LBU was predicted using Phyre2 software. Five variants of LBU
were selected and chemically synthesized, along with unaltered LBU and BHT-B,serving as controls. Peptides were twofold diluted in distilled water, resulting in final concentrations ranging from 1000 µg/ml
to 0.5 µg/ml. An agarspot test, employing 5 µl of the dilution, was conducted on three indicatorstrains:
Lactococcus lactis BGMN1-596, Listeria monocytogenes ATCC19111, and Staphylococcus aureus
ATCC25923. The presence of inhibition zones was analyzed after overnight incubation at 37°C (S. aureus)
and 30°C (L. lactis and L. monocytogenes).
Results: Phyre2 analysis unveiled the presence of two α-helices in LBU’s structure. The majority of LBU
variants displayed altered antimicrobial activity, with some changes being genusspecific, potentially attributable to variances in cell wall composition. Some variants completely lost their activity, underscoring the significance of native amino acids or their physicochemical properties in the corresponding
positions within LBU’s structure. Furthermore, it was confirmed that chemically synthesized LBU effectively retains its antimicrobial activity.
Conclusion: Changesin amino acid composition give insight on structure-function relationship of LBU.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
T1  - Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU
EP  - 123
SP  - 123
UR  - https://hdl.handle.net/21.15107/rcub_intor_804
ER  - 
@conference{
author = "Gardijan, Lazar and Kojić, Milan and Jovanović, Goran and Malešević, Milka",
year = "2023",
abstract = "Introduction: Lactolisterin BU (LBU) is a potent bacteriocin derived from Lactococcuslactis subsp. lactis
bv. diacetylactis BGBU1-4. It exhibits antimicrobial properties against Gram-positive food spoilage and
foodborne pathogens. This research aimed to explore the impact of amino acid substitution in LBU on
its antimicrobial activity by utilizing in silico prediction of LBU’ssecondary structure and amino acid substitutions.
Methods: The secondary structure of LBU was predicted using Phyre2 software. Five variants of LBU
were selected and chemically synthesized, along with unaltered LBU and BHT-B,serving as controls. Peptides were twofold diluted in distilled water, resulting in final concentrations ranging from 1000 µg/ml
to 0.5 µg/ml. An agarspot test, employing 5 µl of the dilution, was conducted on three indicatorstrains:
Lactococcus lactis BGMN1-596, Listeria monocytogenes ATCC19111, and Staphylococcus aureus
ATCC25923. The presence of inhibition zones was analyzed after overnight incubation at 37°C (S. aureus)
and 30°C (L. lactis and L. monocytogenes).
Results: Phyre2 analysis unveiled the presence of two α-helices in LBU’s structure. The majority of LBU
variants displayed altered antimicrobial activity, with some changes being genusspecific, potentially attributable to variances in cell wall composition. Some variants completely lost their activity, underscoring the significance of native amino acids or their physicochemical properties in the corresponding
positions within LBU’s structure. Furthermore, it was confirmed that chemically synthesized LBU effectively retains its antimicrobial activity.
Conclusion: Changesin amino acid composition give insight on structure-function relationship of LBU.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia",
title = "Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU",
pages = "123-123",
url = "https://hdl.handle.net/21.15107/rcub_intor_804"
}
Gardijan, L., Kojić, M., Jovanović, G.,& Malešević, M.. (2023). Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 123-123.
https://hdl.handle.net/21.15107/rcub_intor_804
Gardijan L, Kojić M, Jovanović G, Malešević M. Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia. 2023;:123-123.
https://hdl.handle.net/21.15107/rcub_intor_804 .
Gardijan, Lazar, Kojić, Milan, Jovanović, Goran, Malešević, Milka, "Influence of amino acid substitution on the antimicrobial activity of bacteriocin lactolisterin BU" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia (2023):123-123,
https://hdl.handle.net/21.15107/rcub_intor_804 .

Short-term effect of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome

Malešević, Milka; Stanisavljević, Nemanja; Rašić, Slađan; Vukotić, Goran; Gardijan, Lazar; Obradović, Mina; Kojić, Milan

(Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 2023)

TY  - CONF
AU  - Malešević, Milka
AU  - Stanisavljević, Nemanja
AU  - Rašić, Slađan
AU  - Vukotić, Goran
AU  - Gardijan, Lazar
AU  - Obradović, Mina
AU  - Kojić, Milan
PY  - 2023
UR  - http://intor.torlakinstitut.com/handle/123456789/823
AB  - Introduction: Brevibacillus laterosporus is a promising microbiological agent that can be used to prevent and control destructive diseases affecting honey bee colonies. In the presentstudy, the short-termeffect of the B. laterosporus BGSP11 bee diet on microbiota and mycobiota was investigated.Methods: The honey bee diet was supplemented with spores of B. laterosporus BGSP11 at a concentration of 1×108 CFU/mL in sucrose solution. Metabarcoding analysis of the bee microbial community profile was performed based on 16S RNA (bacteriobiota) and Internally Transcribes Spacer (ITS) region(mycobiota) obtained using MiSeq Illumina sequencing. The QIIME2 v2021.4 pipeline was used to analyze the obtained amplicon data library.Results: The results show that the BGSP11 bee diet slightly altered the bee microbiota and did not leadto potentially harmful changes in the bacterial microbiota. Moreover, it can potentially induce positivechanges, mainly reflected in the reduction of opportunistic bacteria. On the other hand, the treatmenthad a greater effect on mycobiota. However, the changesin the bee mycobiome caused by the treatmentcannot be considered a priori as beneficial or harmful,since the interaction between the bee and its mycobiome is not sufficiently studied. The observed positive changes in the bee mycobiome are mainlyreflected in the reduction of phytopathogenic fungi that may affect the organoleptic and techno-functional properties of honey.Conclusion: This pilot study suggests that the introduction of BGSP11 in beekeeping practice as a biological agent could be considered due to no harmful effects observed on the microbiota of bees.
PB  - Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade
C3  - CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
T1  - Short-term effect of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome
EP  - 112
SP  - 112
UR  - https://hdl.handle.net/21.15107/rcub_intor_823
ER  - 
@conference{
author = "Malešević, Milka and Stanisavljević, Nemanja and Rašić, Slađan and Vukotić, Goran and Gardijan, Lazar and Obradović, Mina and Kojić, Milan",
year = "2023",
abstract = "Introduction: Brevibacillus laterosporus is a promising microbiological agent that can be used to prevent and control destructive diseases affecting honey bee colonies. In the presentstudy, the short-termeffect of the B. laterosporus BGSP11 bee diet on microbiota and mycobiota was investigated.Methods: The honey bee diet was supplemented with spores of B. laterosporus BGSP11 at a concentration of 1×108 CFU/mL in sucrose solution. Metabarcoding analysis of the bee microbial community profile was performed based on 16S RNA (bacteriobiota) and Internally Transcribes Spacer (ITS) region(mycobiota) obtained using MiSeq Illumina sequencing. The QIIME2 v2021.4 pipeline was used to analyze the obtained amplicon data library.Results: The results show that the BGSP11 bee diet slightly altered the bee microbiota and did not leadto potentially harmful changes in the bacterial microbiota. Moreover, it can potentially induce positivechanges, mainly reflected in the reduction of opportunistic bacteria. On the other hand, the treatmenthad a greater effect on mycobiota. However, the changesin the bee mycobiome caused by the treatmentcannot be considered a priori as beneficial or harmful,since the interaction between the bee and its mycobiome is not sufficiently studied. The observed positive changes in the bee mycobiome are mainlyreflected in the reduction of phytopathogenic fungi that may affect the organoleptic and techno-functional properties of honey.Conclusion: This pilot study suggests that the introduction of BGSP11 in beekeeping practice as a biological agent could be considered due to no harmful effects observed on the microbiota of bees.",
publisher = "Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade",
journal = "CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia",
title = "Short-term effect of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome",
pages = "112-112",
url = "https://hdl.handle.net/21.15107/rcub_intor_823"
}
Malešević, M., Stanisavljević, N., Rašić, S., Vukotić, G., Gardijan, L., Obradović, M.,& Kojić, M.. (2023). Short-term effect of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia
Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade., 112-112.
https://hdl.handle.net/21.15107/rcub_intor_823
Malešević M, Stanisavljević N, Rašić S, Vukotić G, Gardijan L, Obradović M, Kojić M. Short-term effect of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome. in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia. 2023;:112-112.
https://hdl.handle.net/21.15107/rcub_intor_823 .
Malešević, Milka, Stanisavljević, Nemanja, Rašić, Slađan, Vukotić, Goran, Gardijan, Lazar, Obradović, Mina, Kojić, Milan, "Short-term effect of Brevibacillus laterosporus supplemented diet on worker honey bee microbiome" in CoMBoS2 – the Second Congress of Molecular Biologists of Serbia, Abstract Book – Trends in Molecular Biology, Special issue 06-08 October 2023, Belgrade, Serbia (2023):112-112,
https://hdl.handle.net/21.15107/rcub_intor_823 .

Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants

Malešević, Milka; Gardijan, Lazar; Miljković, Marija; O'Connor, Paula M; Mirković, Nemanja; Jovčić, Branko; Cotter, Paul D; Jovanovic, Goran; Kojić, Milan

(2023)

TY  - JOUR
AU  - Malešević, Milka
AU  - Gardijan, Lazar
AU  - Miljković, Marija
AU  - O'Connor, Paula M
AU  - Mirković, Nemanja
AU  - Jovčić, Branko
AU  - Cotter, Paul D
AU  - Jovanovic, Goran
AU  - Kojić, Milan
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1828
UR  - http://intor.torlakinstitut.com/handle/123456789/740
AB  - Lactic acid bacterium Lactococcus lactis BGBU1-4 produces 43 amino acids (aa) long bacteriocin, lactolisterin BU (LBU), a 5.161 kDa peptide with potent antibacterial activity against many Gram-positive pathogens. In addition, BGBU1-4 produces an additional unknown product of 3.642 kDa with antibacterial activity. Here, we determined that the significant amount of naturally produced LBU breaks down to create a 3.642 kDa truncated form of LBU bacteriocin consisting of 31 N-terminal aa (LBU1-31) that exhibits 12.5% the antibacterial activity of the full-length LBU. We showed that chemically synthesized LBU is stable and 50% less active than native LBU, and so we used the synthetic peptides of LBU and its variants to further study their activities and antibacterial potential. Deletion analysis of LBU revealed that the 24 N-terminal aa of LBU (LBU1-24) are responsible for antibacterial activity, while downstream aa (25–43) determine the species-specific effectiveness of LBU. Although LBU1-31 contains aa 1–24, the truncation at position 31 is predicted to change the structure within aa 15–31 and might impact on antibacterial activity. Intriguingly, whole genome sequencing and genome mining established that BGBU1-4 is abundant in genes that encode potential antibacterials, but produces LBU and its breakdown product LBU1-31 exclusively.
T2  - Letters in Applied Microbiology
T2  - Letters in Applied MicrobiologyLetters in Applied Microbiology
T1  - Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants
IS  - 2
SP  - ovad004
VL  - 76
DO  - 10.1093/lambio/ovad004
ER  - 
@article{
author = "Malešević, Milka and Gardijan, Lazar and Miljković, Marija and O'Connor, Paula M and Mirković, Nemanja and Jovčić, Branko and Cotter, Paul D and Jovanovic, Goran and Kojić, Milan",
year = "2023",
abstract = "Lactic acid bacterium Lactococcus lactis BGBU1-4 produces 43 amino acids (aa) long bacteriocin, lactolisterin BU (LBU), a 5.161 kDa peptide with potent antibacterial activity against many Gram-positive pathogens. In addition, BGBU1-4 produces an additional unknown product of 3.642 kDa with antibacterial activity. Here, we determined that the significant amount of naturally produced LBU breaks down to create a 3.642 kDa truncated form of LBU bacteriocin consisting of 31 N-terminal aa (LBU1-31) that exhibits 12.5% the antibacterial activity of the full-length LBU. We showed that chemically synthesized LBU is stable and 50% less active than native LBU, and so we used the synthetic peptides of LBU and its variants to further study their activities and antibacterial potential. Deletion analysis of LBU revealed that the 24 N-terminal aa of LBU (LBU1-24) are responsible for antibacterial activity, while downstream aa (25–43) determine the species-specific effectiveness of LBU. Although LBU1-31 contains aa 1–24, the truncation at position 31 is predicted to change the structure within aa 15–31 and might impact on antibacterial activity. Intriguingly, whole genome sequencing and genome mining established that BGBU1-4 is abundant in genes that encode potential antibacterials, but produces LBU and its breakdown product LBU1-31 exclusively.",
journal = "Letters in Applied Microbiology, Letters in Applied MicrobiologyLetters in Applied Microbiology",
title = "Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants",
number = "2",
pages = "ovad004",
volume = "76",
doi = "10.1093/lambio/ovad004"
}
Malešević, M., Gardijan, L., Miljković, M., O'Connor, P. M., Mirković, N., Jovčić, B., Cotter, P. D., Jovanovic, G.,& Kojić, M.. (2023). Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants. in Letters in Applied Microbiology, 76(2), ovad004.
https://doi.org/10.1093/lambio/ovad004
Malešević M, Gardijan L, Miljković M, O'Connor PM, Mirković N, Jovčić B, Cotter PD, Jovanovic G, Kojić M. Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants. in Letters in Applied Microbiology. 2023;76(2):ovad004.
doi:10.1093/lambio/ovad004 .
Malešević, Milka, Gardijan, Lazar, Miljković, Marija, O'Connor, Paula M, Mirković, Nemanja, Jovčić, Branko, Cotter, Paul D, Jovanovic, Goran, Kojić, Milan, "Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants" in Letters in Applied Microbiology, 76, no. 2 (2023):ovad004,
https://doi.org/10.1093/lambio/ovad004 . .
1
2
2

Improvement of nutritional and bioactive properties of barley b-glucan-based food products using Bacillus subtilis 168 endo-b-1,3-1,4-glucanase

Šokarda Slavić, Marinela; Kojić, Milan; Margetić, Aleksandra; Ristović, Marina; Pavlović, Marija; Nikolić, Stefan; Vujčić, Zoran

(Wiley, 2023)

TY  - JOUR
AU  - Šokarda Slavić, Marinela
AU  - Kojić, Milan
AU  - Margetić, Aleksandra
AU  - Ristović, Marina
AU  - Pavlović, Marija
AU  - Nikolić, Stefan
AU  - Vujčić, Zoran
PY  - 2023
UR  - http://intor.torlakinstitut.com/handle/123456789/635
AB  - The combination of b-oligosaccharides from enzymatically hydrolysed barley b-glucan has attracted interest recently due to its positive effects on human health. This study aimed to assess the impact of the
endo-b-1,3-1,4-glucanase enzyme from Bacillus subtilis 168 on improving the nutritional and bioactive
properties of barley b-glucan. A new procedure for the isolation of b-glucan was developed, at a lower
temperature (45 °C), enabling purity from starch contamination, without affecting the yield (6 g b-glucan
from 100 g of barley flour). The endo-b-1,3-1,4-glucanase is cloned into E. coli pQE_Ek enables the high
production and purification (82% yield, 1.8 mg mL 1 and 440 U mg 1
) of an enzyme identical to the
natural one (25.5 kDa). The enzymatic reaction showed high efficiency of b-glucan degradation by recombinant enzyme, giving a mixture of products (of which 3-O-b-cellobiosyl-D-glucose and 3-O-b-cellotriosylD-glucose are the most abundant), the reduction of viscosity (17%) and increase in antioxidant capacities
by 15.2%, 30.9% and 44.0% assessed by ABTS, DPPH and ORAC, respectively. These results indicate
the possible application of endo-b-1,3-1,4-glucanase enzyme in improving the properties of barley bglucan used as functional foods.
PB  - Wiley
T2  - International Journal of Food Science and Technology
T1  - Improvement of nutritional and bioactive properties of barley b-glucan-based food products using Bacillus subtilis 168 endo-b-1,3-1,4-glucanase
DO  - 10.1111/ijfs.16647
ER  - 
@article{
author = "Šokarda Slavić, Marinela and Kojić, Milan and Margetić, Aleksandra and Ristović, Marina and Pavlović, Marija and Nikolić, Stefan and Vujčić, Zoran",
year = "2023",
abstract = "The combination of b-oligosaccharides from enzymatically hydrolysed barley b-glucan has attracted interest recently due to its positive effects on human health. This study aimed to assess the impact of the
endo-b-1,3-1,4-glucanase enzyme from Bacillus subtilis 168 on improving the nutritional and bioactive
properties of barley b-glucan. A new procedure for the isolation of b-glucan was developed, at a lower
temperature (45 °C), enabling purity from starch contamination, without affecting the yield (6 g b-glucan
from 100 g of barley flour). The endo-b-1,3-1,4-glucanase is cloned into E. coli pQE_Ek enables the high
production and purification (82% yield, 1.8 mg mL 1 and 440 U mg 1
) of an enzyme identical to the
natural one (25.5 kDa). The enzymatic reaction showed high efficiency of b-glucan degradation by recombinant enzyme, giving a mixture of products (of which 3-O-b-cellobiosyl-D-glucose and 3-O-b-cellotriosylD-glucose are the most abundant), the reduction of viscosity (17%) and increase in antioxidant capacities
by 15.2%, 30.9% and 44.0% assessed by ABTS, DPPH and ORAC, respectively. These results indicate
the possible application of endo-b-1,3-1,4-glucanase enzyme in improving the properties of barley bglucan used as functional foods.",
publisher = "Wiley",
journal = "International Journal of Food Science and Technology",
title = "Improvement of nutritional and bioactive properties of barley b-glucan-based food products using Bacillus subtilis 168 endo-b-1,3-1,4-glucanase",
doi = "10.1111/ijfs.16647"
}
Šokarda Slavić, M., Kojić, M., Margetić, A., Ristović, M., Pavlović, M., Nikolić, S.,& Vujčić, Z.. (2023). Improvement of nutritional and bioactive properties of barley b-glucan-based food products using Bacillus subtilis 168 endo-b-1,3-1,4-glucanase. in International Journal of Food Science and Technology
Wiley..
https://doi.org/10.1111/ijfs.16647
Šokarda Slavić M, Kojić M, Margetić A, Ristović M, Pavlović M, Nikolić S, Vujčić Z. Improvement of nutritional and bioactive properties of barley b-glucan-based food products using Bacillus subtilis 168 endo-b-1,3-1,4-glucanase. in International Journal of Food Science and Technology. 2023;.
doi:10.1111/ijfs.16647 .
Šokarda Slavić, Marinela, Kojić, Milan, Margetić, Aleksandra, Ristović, Marina, Pavlović, Marija, Nikolić, Stefan, Vujčić, Zoran, "Improvement of nutritional and bioactive properties of barley b-glucan-based food products using Bacillus subtilis 168 endo-b-1,3-1,4-glucanase" in International Journal of Food Science and Technology (2023),
https://doi.org/10.1111/ijfs.16647 . .
1
1

Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications

Šokarda Slavić, Marinela; Kojić, Milan; Margetić, Aleksandra; Stanisavljević, Nemanja; Gardijan, Lazar; Božić, Nataša; Vujčić, Zoran

(Elsevier, 2023)

TY  - JOUR
AU  - Šokarda Slavić, Marinela
AU  - Kojić, Milan
AU  - Margetić, Aleksandra
AU  - Stanisavljević, Nemanja
AU  - Gardijan, Lazar
AU  - Božić, Nataša
AU  - Vujčić, Zoran
PY  - 2023
UR  - http://intor.torlakinstitut.com/handle/123456789/634
AB  - α-Amylase from the thermophilic bacterial strain Anoxybacillus vranjensis ST4 (AVA) was cloned into the pMALc5HisEk expression vector and successfully expressed and purified from the Escherichia coli ER2523 host strain. AVA belongs to the GH13_5 subfamily of glycoside hydrolases and has 7 conserved sequence regions (CSRs) distributed in three distinct domains (A, B, C). In addition, there is a starch binding domain (SBD) from the CBM20 family of carbohydrate binding modules (CBMs). AVA is a monomer of 66 kDa that achieves maximum activity at 60–80 °C and is active and stable over a wide pH range (4.0–9.0). AVA retained 50 % of its activity after 31 h of incubation at 60 °C and was resistant to a large number of denaturing agents. It hydrolyzed starch granules very efficiently, releasing maltose, maltotriose and maltopentaose as the main products. The hydrolysis rates of raw corn, wheat, horseradish, and potato starch, at a concentration of 10 %, were 87.8, 85.9, 93.0, and 58 %, respectively, at pH 8.5 over a 3 h period. This study showed that the high level of expression as well as the properties of this highly stable and versatile enzyme show all the prerequisites for successful application in industry.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications
SP  - 126055
VL  - 249
DO  - 10.1016/j.ijbiomac.2023.126055
ER  - 
@article{
author = "Šokarda Slavić, Marinela and Kojić, Milan and Margetić, Aleksandra and Stanisavljević, Nemanja and Gardijan, Lazar and Božić, Nataša and Vujčić, Zoran",
year = "2023",
abstract = "α-Amylase from the thermophilic bacterial strain Anoxybacillus vranjensis ST4 (AVA) was cloned into the pMALc5HisEk expression vector and successfully expressed and purified from the Escherichia coli ER2523 host strain. AVA belongs to the GH13_5 subfamily of glycoside hydrolases and has 7 conserved sequence regions (CSRs) distributed in three distinct domains (A, B, C). In addition, there is a starch binding domain (SBD) from the CBM20 family of carbohydrate binding modules (CBMs). AVA is a monomer of 66 kDa that achieves maximum activity at 60–80 °C and is active and stable over a wide pH range (4.0–9.0). AVA retained 50 % of its activity after 31 h of incubation at 60 °C and was resistant to a large number of denaturing agents. It hydrolyzed starch granules very efficiently, releasing maltose, maltotriose and maltopentaose as the main products. The hydrolysis rates of raw corn, wheat, horseradish, and potato starch, at a concentration of 10 %, were 87.8, 85.9, 93.0, and 58 %, respectively, at pH 8.5 over a 3 h period. This study showed that the high level of expression as well as the properties of this highly stable and versatile enzyme show all the prerequisites for successful application in industry.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications",
pages = "126055",
volume = "249",
doi = "10.1016/j.ijbiomac.2023.126055"
}
Šokarda Slavić, M., Kojić, M., Margetić, A., Stanisavljević, N., Gardijan, L., Božić, N.,& Vujčić, Z.. (2023). Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications. in International Journal of Biological Macromolecules
Elsevier., 249, 126055.
https://doi.org/10.1016/j.ijbiomac.2023.126055
Šokarda Slavić M, Kojić M, Margetić A, Stanisavljević N, Gardijan L, Božić N, Vujčić Z. Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications. in International Journal of Biological Macromolecules. 2023;249:126055.
doi:10.1016/j.ijbiomac.2023.126055 .
Šokarda Slavić, Marinela, Kojić, Milan, Margetić, Aleksandra, Stanisavljević, Nemanja, Gardijan, Lazar, Božić, Nataša, Vujčić, Zoran, "Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications" in International Journal of Biological Macromolecules, 249 (2023):126055,
https://doi.org/10.1016/j.ijbiomac.2023.126055 . .
1

Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene

Filipić, Brankica; Malešević, Milka; Vasiljević, Zorica; Novović, Katarina; Kojić, Milan; Jovčić, Branko

(Springer Science and Business Media B.V., 2022)

TY  - JOUR
AU  - Filipić, Brankica
AU  - Malešević, Milka
AU  - Vasiljević, Zorica
AU  - Novović, Katarina
AU  - Kojić, Milan
AU  - Jovčić, Branko
PY  - 2022
UR  - http://intor.torlakinstitut.com/handle/123456789/724
AB  - Trimethoprim-sulfamethoxazole (SXT) is the preferable treatment option of the infections caused by Achromobacter spp. Our study aimed to analyze the SXT resistance of 98 Achromobacter spp. isolates from pediatric patients, among which 33 isolates were SXT-resistant. The presence of intI1 was screened by PCR and genome sequence analyses. The intI1 gene was detected in 10 of SXT-resistant isolates that had shorter intI1 PCR fragments named intI1S. Structural changes in intI1S were confirmed by genome sequencing and analyses which revealed 86 amino acids deletion in IntI1S protein compared to canonical IntI1 protein. All IntI1S isolates were of non-CF origin. Pan-genome analysis of intI1S bearing A. xylosoxidans isolates comprised 9052 genes, with the core genome consisting of 5455 protein-coding genes. Results in this study indicate that IntI1S isolates were derived from clinical settings and that cystic fibrosis (CF) patients were potential reservoirs for healthcare-associated infections that occurred in non-CF patients.
PB  - Springer Science and Business Media B.V.
T2  - Folia Microbiologica
T1  - Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene
DO  - 10.1007/s12223-022-01026-8
ER  - 
@article{
author = "Filipić, Brankica and Malešević, Milka and Vasiljević, Zorica and Novović, Katarina and Kojić, Milan and Jovčić, Branko",
year = "2022",
abstract = "Trimethoprim-sulfamethoxazole (SXT) is the preferable treatment option of the infections caused by Achromobacter spp. Our study aimed to analyze the SXT resistance of 98 Achromobacter spp. isolates from pediatric patients, among which 33 isolates were SXT-resistant. The presence of intI1 was screened by PCR and genome sequence analyses. The intI1 gene was detected in 10 of SXT-resistant isolates that had shorter intI1 PCR fragments named intI1S. Structural changes in intI1S were confirmed by genome sequencing and analyses which revealed 86 amino acids deletion in IntI1S protein compared to canonical IntI1 protein. All IntI1S isolates were of non-CF origin. Pan-genome analysis of intI1S bearing A. xylosoxidans isolates comprised 9052 genes, with the core genome consisting of 5455 protein-coding genes. Results in this study indicate that IntI1S isolates were derived from clinical settings and that cystic fibrosis (CF) patients were potential reservoirs for healthcare-associated infections that occurred in non-CF patients.",
publisher = "Springer Science and Business Media B.V.",
journal = "Folia Microbiologica",
title = "Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene",
doi = "10.1007/s12223-022-01026-8"
}
Filipić, B., Malešević, M., Vasiljević, Z., Novović, K., Kojić, M.,& Jovčić, B.. (2022). Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene. in Folia Microbiologica
Springer Science and Business Media B.V...
https://doi.org/10.1007/s12223-022-01026-8
Filipić B, Malešević M, Vasiljević Z, Novović K, Kojić M, Jovčić B. Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene. in Folia Microbiologica. 2022;.
doi:10.1007/s12223-022-01026-8 .
Filipić, Brankica, Malešević, Milka, Vasiljević, Zorica, Novović, Katarina, Kojić, Milan, Jovčić, Branko, "Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene" in Folia Microbiologica (2022),
https://doi.org/10.1007/s12223-022-01026-8 . .
2
2
1

Characterization of antibiotic resistance in Escherichia coli isolates from Black-headed gulls (Larus ridibundus) present in the city of Novi Sad, Serbia

Velhner, Maja; Todorović, Dalibor; Novović, Katarina; Jovčić, Branko; Lazić, Gospava; Kojić, Milan; Kehrenberg, Corinna

(Springer, Dordrecht, 2021)

TY  - JOUR
AU  - Velhner, Maja
AU  - Todorović, Dalibor
AU  - Novović, Katarina
AU  - Jovčić, Branko
AU  - Lazić, Gospava
AU  - Kojić, Milan
AU  - Kehrenberg, Corinna
PY  - 2021
UR  - http://intor.torlakinstitut.com/handle/123456789/710
AB  - Despite common resistance to antimicrobials in Escherichia coli isolates from farm animals in Serbia, no data are currently accessible on its occurrence in E. coli isolated from gulls. Therefore, 67 cloacal swabs and 70 fecal samples from black-headed gulls were investigated for the presence of antibiotic-resistant E. coli isolates. Ninety-nine isolates were obtained during the study. Resistotyping and resistance gene typing has shown that 44 isolates harbor resistance to one or more antibiotics. Multidrug resistance was detected in 24 E. coli isolates. Ten isolates were resistant to extended-spectrum cephalosporin antibiotics and were studied in detail including virulence gene typing, phylogenetic and multilocus sequence typing, and mating. These ten isolates belonged to phylogenetic groups B2 (five isolates), D (four isolates) and B1 (one isolate). Five different sequence types (ST38, ST2307, ST224, ST162 and ST34) were detected in E. coli isolates with AmpC phenotype and genotype. One isolate carried the Inc I2/FIB replicon type plasmid with the bla(CTX-M-1) gene. Nine isolates had bla(CMY-2) genes, which were detected on conjugative plasmids in seven isolates. The virulence genes hly, iroN, iss, ompT and cvaC were detected in one transconjugant. Ten isolates were found to be resistant to ciprofloxacin, whose MIC ranged from 4 to 32 mg/L. Genotyping revealed single or double mutations in the quinolone resistance determining region (QRDR) of the gyrA or gyrA, parC and parE genes, respectively. So, Black-headed gulls from Serbia may be colonized by multidrug-resistant E. coli, some of which are resistant to critically important antibiotics in medicine.
PB  - Springer, Dordrecht
T2  - Veterinary Research Communications
T1  - Characterization of antibiotic resistance in Escherichia coli isolates from Black-headed gulls (Larus ridibundus) present in the city of Novi Sad, Serbia
EP  - 209
IS  - 4
SP  - 199
VL  - 45
DO  - 10.1007/s11259-021-09801-7
ER  - 
@article{
author = "Velhner, Maja and Todorović, Dalibor and Novović, Katarina and Jovčić, Branko and Lazić, Gospava and Kojić, Milan and Kehrenberg, Corinna",
year = "2021",
abstract = "Despite common resistance to antimicrobials in Escherichia coli isolates from farm animals in Serbia, no data are currently accessible on its occurrence in E. coli isolated from gulls. Therefore, 67 cloacal swabs and 70 fecal samples from black-headed gulls were investigated for the presence of antibiotic-resistant E. coli isolates. Ninety-nine isolates were obtained during the study. Resistotyping and resistance gene typing has shown that 44 isolates harbor resistance to one or more antibiotics. Multidrug resistance was detected in 24 E. coli isolates. Ten isolates were resistant to extended-spectrum cephalosporin antibiotics and were studied in detail including virulence gene typing, phylogenetic and multilocus sequence typing, and mating. These ten isolates belonged to phylogenetic groups B2 (five isolates), D (four isolates) and B1 (one isolate). Five different sequence types (ST38, ST2307, ST224, ST162 and ST34) were detected in E. coli isolates with AmpC phenotype and genotype. One isolate carried the Inc I2/FIB replicon type plasmid with the bla(CTX-M-1) gene. Nine isolates had bla(CMY-2) genes, which were detected on conjugative plasmids in seven isolates. The virulence genes hly, iroN, iss, ompT and cvaC were detected in one transconjugant. Ten isolates were found to be resistant to ciprofloxacin, whose MIC ranged from 4 to 32 mg/L. Genotyping revealed single or double mutations in the quinolone resistance determining region (QRDR) of the gyrA or gyrA, parC and parE genes, respectively. So, Black-headed gulls from Serbia may be colonized by multidrug-resistant E. coli, some of which are resistant to critically important antibiotics in medicine.",
publisher = "Springer, Dordrecht",
journal = "Veterinary Research Communications",
title = "Characterization of antibiotic resistance in Escherichia coli isolates from Black-headed gulls (Larus ridibundus) present in the city of Novi Sad, Serbia",
pages = "209-199",
number = "4",
volume = "45",
doi = "10.1007/s11259-021-09801-7"
}
Velhner, M., Todorović, D., Novović, K., Jovčić, B., Lazić, G., Kojić, M.,& Kehrenberg, C.. (2021). Characterization of antibiotic resistance in Escherichia coli isolates from Black-headed gulls (Larus ridibundus) present in the city of Novi Sad, Serbia. in Veterinary Research Communications
Springer, Dordrecht., 45(4), 199-209.
https://doi.org/10.1007/s11259-021-09801-7
Velhner M, Todorović D, Novović K, Jovčić B, Lazić G, Kojić M, Kehrenberg C. Characterization of antibiotic resistance in Escherichia coli isolates from Black-headed gulls (Larus ridibundus) present in the city of Novi Sad, Serbia. in Veterinary Research Communications. 2021;45(4):199-209.
doi:10.1007/s11259-021-09801-7 .
Velhner, Maja, Todorović, Dalibor, Novović, Katarina, Jovčić, Branko, Lazić, Gospava, Kojić, Milan, Kehrenberg, Corinna, "Characterization of antibiotic resistance in Escherichia coli isolates from Black-headed gulls (Larus ridibundus) present in the city of Novi Sad, Serbia" in Veterinary Research Communications, 45, no. 4 (2021):199-209,
https://doi.org/10.1007/s11259-021-09801-7 . .
6
1
6

C-protein alpha-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae

Mirković, Nemanja; Obradović, Mina; O'Connor, Paula M.; Filipić, Brankica; Jovčić, Branko; Cotter, Paul D.; Kojić, Milan

(Springer, Dordrecht, 2021)

TY  - JOUR
AU  - Mirković, Nemanja
AU  - Obradović, Mina
AU  - O'Connor, Paula M.
AU  - Filipić, Brankica
AU  - Jovčić, Branko
AU  - Cotter, Paul D.
AU  - Kojić, Milan
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1429
UR  - http://intor.torlakinstitut.com/handle/123456789/706
AB  - Screening for producers of potent antimicrobial peptides, resulted in the isolation of Bacillus cereus BGNM1 with strong antimicrobial activity against Listeria monocytogenes. Genome sequence analysis revealed that BGNM1 contains the gene cluster associated with the production of the lantibiotic, thusin, previously identified in B. thuringiensis. Purification of the antimicrobial activity confirmed that strain BGMN1 produces thusin. Both thusin sensitive and resistant strains were detected among clinical isolates of Streptococcus agalactiae. Random mutagenesis of a thusin sensitive strain, S. agalactiae B782, was performed in an attempt to identify the receptor protein for thusin. Three independent thusin resistant mutants were selected and their complete genomes sequenced. Comparative sequence analysis of these mutants with the WT strain revealed that duplication of a region encoding a 79 amino acids repeat in a C-protein alpha-antigen was a common difference, suggesting it to be responsible for increased resistance to thusin. Since induced thusin resistant mutants showed higher level of resistance than the naturally resistant B761 strain, complete genome sequencing of strain B761 was performed to check the integrity of the C-protein alpha-antigen-encoding gene. This analysis revealed that this gene is deleted in B761, providing further evidence that this protein promotes interaction of the thusin with receptor.
PB  - Springer, Dordrecht
T2  - Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology
T1  - C-protein alpha-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae
EP  - 1607
IS  - 10
SP  - 1595
VL  - 114
DO  - 10.1007/s10482-021-01626-3
ER  - 
@article{
author = "Mirković, Nemanja and Obradović, Mina and O'Connor, Paula M. and Filipić, Brankica and Jovčić, Branko and Cotter, Paul D. and Kojić, Milan",
year = "2021",
abstract = "Screening for producers of potent antimicrobial peptides, resulted in the isolation of Bacillus cereus BGNM1 with strong antimicrobial activity against Listeria monocytogenes. Genome sequence analysis revealed that BGNM1 contains the gene cluster associated with the production of the lantibiotic, thusin, previously identified in B. thuringiensis. Purification of the antimicrobial activity confirmed that strain BGMN1 produces thusin. Both thusin sensitive and resistant strains were detected among clinical isolates of Streptococcus agalactiae. Random mutagenesis of a thusin sensitive strain, S. agalactiae B782, was performed in an attempt to identify the receptor protein for thusin. Three independent thusin resistant mutants were selected and their complete genomes sequenced. Comparative sequence analysis of these mutants with the WT strain revealed that duplication of a region encoding a 79 amino acids repeat in a C-protein alpha-antigen was a common difference, suggesting it to be responsible for increased resistance to thusin. Since induced thusin resistant mutants showed higher level of resistance than the naturally resistant B761 strain, complete genome sequencing of strain B761 was performed to check the integrity of the C-protein alpha-antigen-encoding gene. This analysis revealed that this gene is deleted in B761, providing further evidence that this protein promotes interaction of the thusin with receptor.",
publisher = "Springer, Dordrecht",
journal = "Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology",
title = "C-protein alpha-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae",
pages = "1607-1595",
number = "10",
volume = "114",
doi = "10.1007/s10482-021-01626-3"
}
Mirković, N., Obradović, M., O'Connor, P. M., Filipić, B., Jovčić, B., Cotter, P. D.,& Kojić, M.. (2021). C-protein alpha-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae. in Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology
Springer, Dordrecht., 114(10), 1595-1607.
https://doi.org/10.1007/s10482-021-01626-3
Mirković N, Obradović M, O'Connor PM, Filipić B, Jovčić B, Cotter PD, Kojić M. C-protein alpha-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae. in Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology. 2021;114(10):1595-1607.
doi:10.1007/s10482-021-01626-3 .
Mirković, Nemanja, Obradović, Mina, O'Connor, Paula M., Filipić, Brankica, Jovčić, Branko, Cotter, Paul D., Kojić, Milan, "C-protein alpha-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae" in Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 114, no. 10 (2021):1595-1607,
https://doi.org/10.1007/s10482-021-01626-3 . .
3
1
1

Brevibacillus laterosporus supplementation diet modulates honey bee microbiome

Malešević, Milka; Rašić, Slađan; Santra, Violeta; Kojić, Milan; Stanisavljević, Nemanja

(Novi Sad : Faculty of Sciences, Department of Biology and Ecology, 2021)

TY  - CONF
AU  - Malešević, Milka
AU  - Rašić, Slađan
AU  - Santra, Violeta
AU  - Kojić, Milan
AU  - Stanisavljević, Nemanja
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1871
UR  - http://intor.torlakinstitut.com/handle/123456789/703
AB  - Among them, bacterial and fungal pathogens Paenibacillus larvae, Melissococcus pluton, Ascosphera apis andNosema ceranae play a major impact on honey bees colonies. Thus, developing alternative prophylactic andcurative strategies are urgently needed. The use of probiotic bacteria in honey bee supplemental feeding istherefore promising to treat or prevent diseases. Brevibacillus laterosporus, Gram-positive endospore formingbacilli, is recognised as one of the promising antibacterial and antifungal agents producer.The aim of this study was to examine the short-therm effects of B. laterosporus supplemented diet on workerhoney bee microbiome.Dry spores of B. laterosporus strain BGSP11 have been administrated through a sugar syrup diet to tencolonies and a representative specimen of worker honey bees was taken before the start of the treatmentand immediately after the syrup was consumed. The microbial diversity was assessed before and after thetreatment using Illumina MiSeq sequencing platforms (ID Genomics service, Seattle, WA, USA). 16s rRNAsequencing for bacterial community profiling and fungal Internally Transcribes Spacer for mycological taxaprofiling were used. The next-generation microbiome bioinformatics platform QIIME2 v 2021.4 was used forfiltering and denoising obtained sequences, calculation of diversity metrics and taxonomy assignment. Thefeature classifier was trained using the Greengenes v 13_8 for bacterial taxa and fungal UNITE database v 8.3.The results obtained in this study indicated statisticaly significant alfa diversity between control and experimentalgroup honey bee microbiota composition. The diversity abundance was higher in control comparingto the group treated with B. laterosporus strain BGSP11 spores. There was no significant diference in Bray-Curtis distance among two groups of analysed samples. Regarding to mycological abundance, compositionwas completely different between two groups; control group had Claviceps as predominant genus, while intreated group of honey bee microbiome Metschnikowia genus was prevalent, indicating that the presence offungal pathogens in treated group is highly diminished.
PB  - Novi Sad : Faculty of Sciences, Department of Biology and Ecology
C3  - Biologia Serbica
T1  - Brevibacillus laterosporus supplementation diet modulates honey bee microbiome
IS  - 1 (Special Edition)
SP  - 113
VL  - 43
UR  - https://hdl.handle.net/21.15107/rcub_intor_703
ER  - 
@conference{
author = "Malešević, Milka and Rašić, Slađan and Santra, Violeta and Kojić, Milan and Stanisavljević, Nemanja",
year = "2021",
abstract = "Among them, bacterial and fungal pathogens Paenibacillus larvae, Melissococcus pluton, Ascosphera apis andNosema ceranae play a major impact on honey bees colonies. Thus, developing alternative prophylactic andcurative strategies are urgently needed. The use of probiotic bacteria in honey bee supplemental feeding istherefore promising to treat or prevent diseases. Brevibacillus laterosporus, Gram-positive endospore formingbacilli, is recognised as one of the promising antibacterial and antifungal agents producer.The aim of this study was to examine the short-therm effects of B. laterosporus supplemented diet on workerhoney bee microbiome.Dry spores of B. laterosporus strain BGSP11 have been administrated through a sugar syrup diet to tencolonies and a representative specimen of worker honey bees was taken before the start of the treatmentand immediately after the syrup was consumed. The microbial diversity was assessed before and after thetreatment using Illumina MiSeq sequencing platforms (ID Genomics service, Seattle, WA, USA). 16s rRNAsequencing for bacterial community profiling and fungal Internally Transcribes Spacer for mycological taxaprofiling were used. The next-generation microbiome bioinformatics platform QIIME2 v 2021.4 was used forfiltering and denoising obtained sequences, calculation of diversity metrics and taxonomy assignment. Thefeature classifier was trained using the Greengenes v 13_8 for bacterial taxa and fungal UNITE database v 8.3.The results obtained in this study indicated statisticaly significant alfa diversity between control and experimentalgroup honey bee microbiota composition. The diversity abundance was higher in control comparingto the group treated with B. laterosporus strain BGSP11 spores. There was no significant diference in Bray-Curtis distance among two groups of analysed samples. Regarding to mycological abundance, compositionwas completely different between two groups; control group had Claviceps as predominant genus, while intreated group of honey bee microbiome Metschnikowia genus was prevalent, indicating that the presence offungal pathogens in treated group is highly diminished.",
publisher = "Novi Sad : Faculty of Sciences, Department of Biology and Ecology",
journal = "Biologia Serbica",
title = "Brevibacillus laterosporus supplementation diet modulates honey bee microbiome",
number = "1 (Special Edition)",
pages = "113",
volume = "43",
url = "https://hdl.handle.net/21.15107/rcub_intor_703"
}
Malešević, M., Rašić, S., Santra, V., Kojić, M.,& Stanisavljević, N.. (2021). Brevibacillus laterosporus supplementation diet modulates honey bee microbiome. in Biologia Serbica
Novi Sad : Faculty of Sciences, Department of Biology and Ecology., 43(1 (Special Edition)), 113.
https://hdl.handle.net/21.15107/rcub_intor_703
Malešević M, Rašić S, Santra V, Kojić M, Stanisavljević N. Brevibacillus laterosporus supplementation diet modulates honey bee microbiome. in Biologia Serbica. 2021;43(1 (Special Edition)):113.
https://hdl.handle.net/21.15107/rcub_intor_703 .
Malešević, Milka, Rašić, Slađan, Santra, Violeta, Kojić, Milan, Stanisavljević, Nemanja, "Brevibacillus laterosporus supplementation diet modulates honey bee microbiome" in Biologia Serbica, 43, no. 1 (Special Edition) (2021):113,
https://hdl.handle.net/21.15107/rcub_intor_703 .

Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia

Jovčić, Branko; Novović, Katarina; Filipić, Brankica; Velhner, Maja; Todorović, Dalibor; Matović, Kazimir; Rasić, Zoran; Nikolić, Sonja; Kiskarolj, Ferenc; Kojić, Milan

(MDPI, Basel, 2020)

TY  - JOUR
AU  - Jovčić, Branko
AU  - Novović, Katarina
AU  - Filipić, Brankica
AU  - Velhner, Maja
AU  - Todorović, Dalibor
AU  - Matović, Kazimir
AU  - Rasić, Zoran
AU  - Nikolić, Sonja
AU  - Kiskarolj, Ferenc
AU  - Kojić, Milan
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1349
UR  - http://intor.torlakinstitut.com/handle/123456789/744
AB  - The antimicrobial susceptibility testing was conducted on 174 single isolates from poultry farms in Serbia and it was determined that seven Salmonella spp. were multidrug resistant. Sixteen serotypes were detected, but only serotype Infantis confirmed reduced susceptibility to colistin. Seven colistin resistant Salmonella Infantis were studied in detail using the WGS approach. Three sequence types were identified corresponding to different epizootiology region. The isolate from the Province of Vojvodina 3842 and isolates from Jagodina (92 and 821) are represented by the sequence type ST413 and ST11, respectively. Four isolates from Kraljevo are ST32, a common S. Infantis sequence type in humans, poultry and food. The fosfomycin resistance gene fosA7 in isolate 3842 and the vgaA gene in isolate 8418/2948 encoding resistance to pleuromutilins were reported for the first time in serovar Infantis. The changes in relative expression of the phoP/Q, mgrB and pmrA/B genes were detected. Single nucleotide polymorphisms of the pmrB gene, including transitions Val164Gly or Val164Met, and Arg92Pro are described. Analyses of quinolone resistance determining region revealed substitutions Ser83Tyr in GyrA protein and Thr57Ser and Ser80Arg in ParC protein. Based on WGS data, there are two major clusters among analyzed Salmonella Infantis isolates from central Serbia.
PB  - MDPI, Basel
T2  - Antibiotics-Basel
T1  - Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia
IS  - 12
VL  - 9
DO  - 10.3390/antibiotics9120886
ER  - 
@article{
author = "Jovčić, Branko and Novović, Katarina and Filipić, Brankica and Velhner, Maja and Todorović, Dalibor and Matović, Kazimir and Rasić, Zoran and Nikolić, Sonja and Kiskarolj, Ferenc and Kojić, Milan",
year = "2020",
abstract = "The antimicrobial susceptibility testing was conducted on 174 single isolates from poultry farms in Serbia and it was determined that seven Salmonella spp. were multidrug resistant. Sixteen serotypes were detected, but only serotype Infantis confirmed reduced susceptibility to colistin. Seven colistin resistant Salmonella Infantis were studied in detail using the WGS approach. Three sequence types were identified corresponding to different epizootiology region. The isolate from the Province of Vojvodina 3842 and isolates from Jagodina (92 and 821) are represented by the sequence type ST413 and ST11, respectively. Four isolates from Kraljevo are ST32, a common S. Infantis sequence type in humans, poultry and food. The fosfomycin resistance gene fosA7 in isolate 3842 and the vgaA gene in isolate 8418/2948 encoding resistance to pleuromutilins were reported for the first time in serovar Infantis. The changes in relative expression of the phoP/Q, mgrB and pmrA/B genes were detected. Single nucleotide polymorphisms of the pmrB gene, including transitions Val164Gly or Val164Met, and Arg92Pro are described. Analyses of quinolone resistance determining region revealed substitutions Ser83Tyr in GyrA protein and Thr57Ser and Ser80Arg in ParC protein. Based on WGS data, there are two major clusters among analyzed Salmonella Infantis isolates from central Serbia.",
publisher = "MDPI, Basel",
journal = "Antibiotics-Basel",
title = "Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia",
number = "12",
volume = "9",
doi = "10.3390/antibiotics9120886"
}
Jovčić, B., Novović, K., Filipić, B., Velhner, M., Todorović, D., Matović, K., Rasić, Z., Nikolić, S., Kiskarolj, F.,& Kojić, M.. (2020). Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia. in Antibiotics-Basel
MDPI, Basel., 9(12).
https://doi.org/10.3390/antibiotics9120886
Jovčić B, Novović K, Filipić B, Velhner M, Todorović D, Matović K, Rasić Z, Nikolić S, Kiskarolj F, Kojić M. Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia. in Antibiotics-Basel. 2020;9(12).
doi:10.3390/antibiotics9120886 .
Jovčić, Branko, Novović, Katarina, Filipić, Brankica, Velhner, Maja, Todorović, Dalibor, Matović, Kazimir, Rasić, Zoran, Nikolić, Sonja, Kiskarolj, Ferenc, Kojić, Milan, "Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia" in Antibiotics-Basel, 9, no. 12 (2020),
https://doi.org/10.3390/antibiotics9120886 . .
20
5
21

Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties

Terzić-Vidojević, Amarela; Veljović, Katarina; Tolinački, Maja; Živković, Milica; Lukić, Jovanka; Lozo, Jelena; Fira, Đorđe; Jovčić, Branko; Strahinić, Ivana; Begović, Jelena; Popović, Nikola; Miljković, Marija; Kojić, Milan; Topisirović, Ljubiša; Golić, Nataša

(Elsevier, Amsterdam, 2020)

TY  - JOUR
AU  - Terzić-Vidojević, Amarela
AU  - Veljović, Katarina
AU  - Tolinački, Maja
AU  - Živković, Milica
AU  - Lukić, Jovanka
AU  - Lozo, Jelena
AU  - Fira, Đorđe
AU  - Jovčić, Branko
AU  - Strahinić, Ivana
AU  - Begović, Jelena
AU  - Popović, Nikola
AU  - Miljković, Marija
AU  - Kojić, Milan
AU  - Topisirović, Ljubiša
AU  - Golić, Nataša
PY  - 2020
UR  - http://intor.torlakinstitut.com/handle/123456789/733
AB  - The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.
PB  - Elsevier, Amsterdam
T2  - Food Research International
T1  - Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties
VL  - 136
DO  - 10.1016/j.foodres.2020.109494
ER  - 
@article{
author = "Terzić-Vidojević, Amarela and Veljović, Katarina and Tolinački, Maja and Živković, Milica and Lukić, Jovanka and Lozo, Jelena and Fira, Đorđe and Jovčić, Branko and Strahinić, Ivana and Begović, Jelena and Popović, Nikola and Miljković, Marija and Kojić, Milan and Topisirović, Ljubiša and Golić, Nataša",
year = "2020",
abstract = "The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.",
publisher = "Elsevier, Amsterdam",
journal = "Food Research International",
title = "Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties",
volume = "136",
doi = "10.1016/j.foodres.2020.109494"
}
Terzić-Vidojević, A., Veljović, K., Tolinački, M., Živković, M., Lukić, J., Lozo, J., Fira, Đ., Jovčić, B., Strahinić, I., Begović, J., Popović, N., Miljković, M., Kojić, M., Topisirović, L.,& Golić, N.. (2020). Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. in Food Research International
Elsevier, Amsterdam., 136.
https://doi.org/10.1016/j.foodres.2020.109494
Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. in Food Research International. 2020;136.
doi:10.1016/j.foodres.2020.109494 .
Terzić-Vidojević, Amarela, Veljović, Katarina, Tolinački, Maja, Živković, Milica, Lukić, Jovanka, Lozo, Jelena, Fira, Đorđe, Jovčić, Branko, Strahinić, Ivana, Begović, Jelena, Popović, Nikola, Miljković, Marija, Kojić, Milan, Topisirović, Ljubiša, Golić, Nataša, "Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties" in Food Research International, 136 (2020),
https://doi.org/10.1016/j.foodres.2020.109494 . .
51
47

Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties

Terzić-Vidojević, Amarela; Veljović, Katarina; Tolinački, Maja; Živković, Milica; Lukić, Jovanka; Lozo, Jelena; Fira, Đorđe; Jovčić, Branko; Strahinić, Ivana; Begović, Jelena; Popović, Nikola; Miljković, Marija; Kojić, Milan; Topisirović, Ljubiša; Golić, Nataša

(Elsevier, Amsterdam, 2020)

TY  - JOUR
AU  - Terzić-Vidojević, Amarela
AU  - Veljović, Katarina
AU  - Tolinački, Maja
AU  - Živković, Milica
AU  - Lukić, Jovanka
AU  - Lozo, Jelena
AU  - Fira, Đorđe
AU  - Jovčić, Branko
AU  - Strahinić, Ivana
AU  - Begović, Jelena
AU  - Popović, Nikola
AU  - Miljković, Marija
AU  - Kojić, Milan
AU  - Topisirović, Ljubiša
AU  - Golić, Nataša
PY  - 2020
UR  - http://intor.torlakinstitut.com/handle/123456789/732
AB  - The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.
PB  - Elsevier, Amsterdam
T2  - Food Research International
T1  - Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties
VL  - 136
DO  - 10.1016/j.foodres.2020.109494
ER  - 
@article{
author = "Terzić-Vidojević, Amarela and Veljović, Katarina and Tolinački, Maja and Živković, Milica and Lukić, Jovanka and Lozo, Jelena and Fira, Đorđe and Jovčić, Branko and Strahinić, Ivana and Begović, Jelena and Popović, Nikola and Miljković, Marija and Kojić, Milan and Topisirović, Ljubiša and Golić, Nataša",
year = "2020",
abstract = "The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.",
publisher = "Elsevier, Amsterdam",
journal = "Food Research International",
title = "Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties",
volume = "136",
doi = "10.1016/j.foodres.2020.109494"
}
Terzić-Vidojević, A., Veljović, K., Tolinački, M., Živković, M., Lukić, J., Lozo, J., Fira, Đ., Jovčić, B., Strahinić, I., Begović, J., Popović, N., Miljković, M., Kojić, M., Topisirović, L.,& Golić, N.. (2020). Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. in Food Research International
Elsevier, Amsterdam., 136.
https://doi.org/10.1016/j.foodres.2020.109494
Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. in Food Research International. 2020;136.
doi:10.1016/j.foodres.2020.109494 .
Terzić-Vidojević, Amarela, Veljović, Katarina, Tolinački, Maja, Živković, Milica, Lukić, Jovanka, Lozo, Jelena, Fira, Đorđe, Jovčić, Branko, Strahinić, Ivana, Begović, Jelena, Popović, Nikola, Miljković, Marija, Kojić, Milan, Topisirović, Ljubiša, Golić, Nataša, "Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties" in Food Research International, 136 (2020),
https://doi.org/10.1016/j.foodres.2020.109494 . .
51
47

Characterization, Antibiofilm, and Depolymerizing Activity of Two Phages Active on Carbapenem-ResistantAcinetobacter baumannii

Vukotić, Goran; Obradović, Mina; Novović, Katarina; Di Luca, Mariagrazia; Jovčić, Branko; Fira, Đorđe; Neve, Horst; Kojić, Milan; McAuliffe, Olivia

(Frontiers Media Sa, Lausanne, 2020)

TY  - JOUR
AU  - Vukotić, Goran
AU  - Obradović, Mina
AU  - Novović, Katarina
AU  - Di Luca, Mariagrazia
AU  - Jovčić, Branko
AU  - Fira, Đorđe
AU  - Neve, Horst
AU  - Kojić, Milan
AU  - McAuliffe, Olivia
PY  - 2020
UR  - http://intor.torlakinstitut.com/handle/123456789/721
AB  - Acinetobacter baumanniiis a leading cause of healthcare-associated infections worldwide. Its various intrinsic and acquired mechanisms of antibiotic resistance make the therapeutic challenge even more serious. One of the promising alternative treatments that is increasingly highlighted is phage therapy, the therapeutic use of bacteriophages to treat bacterial infections. Two phages active against nosocomial carbapenem-resistantA. baumanniistrain 6077/12, vB_AbaM_ISTD, and vB_AbaM_NOVI, were isolated from Belgrade wastewaters, purified, and concentrated using CsCl gradient ultracentrifugation. The phages were screened against 103 clinical isolates ofA. baumanniifrom a laboratory collection and characterized based on plaque and virion morphology, host range, adsorption rate, and one-step growth curve. Given that phage ISTD showed a broader host range, better adsorption rate, shorter latent period, and larger burst size, its ability to lyse planktonic and biofilm-embedded cells was tested in detail. Phage ISTD yielded a 3.5- and 2-log reduction in planktonic and biofilm-associated viable bacterial cell count, respectively, but the effect was time-dependent. Both phages produced growing turbid halos around plaques indicating the synthesis of depolymerases, enzymes capable of degrading bacterial exopolysaccharides. Halos tested positive for presence of phages in the proximity of the plaque, but not further from the plaque, which indicates that the observed halo enlargement is a consequence of enzyme diffusion through the agar, independently of the phages. This notion was also supported by the growing halos induced by phage preparations applied on pregrown bacterial lawns, indicating that depolymerizing effect was achieved also on non-dividing sensitive cells. Overall, good rates of growth, fast adsorption rate, broad host range, and high depolymerizing activity, as well as antibacterial effectiveness against planktonic and biofilm-associated bacteria, make these phages good candidates for potential application in combatingA. baumanniiinfections.
PB  - Frontiers Media Sa, Lausanne
T2  - Frontiers in Medicine
T1  - Characterization, Antibiofilm, and Depolymerizing Activity of Two Phages Active on Carbapenem-ResistantAcinetobacter baumannii
VL  - 7
DO  - 10.3389/fmed.2020.00426
ER  - 
@article{
author = "Vukotić, Goran and Obradović, Mina and Novović, Katarina and Di Luca, Mariagrazia and Jovčić, Branko and Fira, Đorđe and Neve, Horst and Kojić, Milan and McAuliffe, Olivia",
year = "2020",
abstract = "Acinetobacter baumanniiis a leading cause of healthcare-associated infections worldwide. Its various intrinsic and acquired mechanisms of antibiotic resistance make the therapeutic challenge even more serious. One of the promising alternative treatments that is increasingly highlighted is phage therapy, the therapeutic use of bacteriophages to treat bacterial infections. Two phages active against nosocomial carbapenem-resistantA. baumanniistrain 6077/12, vB_AbaM_ISTD, and vB_AbaM_NOVI, were isolated from Belgrade wastewaters, purified, and concentrated using CsCl gradient ultracentrifugation. The phages were screened against 103 clinical isolates ofA. baumanniifrom a laboratory collection and characterized based on plaque and virion morphology, host range, adsorption rate, and one-step growth curve. Given that phage ISTD showed a broader host range, better adsorption rate, shorter latent period, and larger burst size, its ability to lyse planktonic and biofilm-embedded cells was tested in detail. Phage ISTD yielded a 3.5- and 2-log reduction in planktonic and biofilm-associated viable bacterial cell count, respectively, but the effect was time-dependent. Both phages produced growing turbid halos around plaques indicating the synthesis of depolymerases, enzymes capable of degrading bacterial exopolysaccharides. Halos tested positive for presence of phages in the proximity of the plaque, but not further from the plaque, which indicates that the observed halo enlargement is a consequence of enzyme diffusion through the agar, independently of the phages. This notion was also supported by the growing halos induced by phage preparations applied on pregrown bacterial lawns, indicating that depolymerizing effect was achieved also on non-dividing sensitive cells. Overall, good rates of growth, fast adsorption rate, broad host range, and high depolymerizing activity, as well as antibacterial effectiveness against planktonic and biofilm-associated bacteria, make these phages good candidates for potential application in combatingA. baumanniiinfections.",
publisher = "Frontiers Media Sa, Lausanne",
journal = "Frontiers in Medicine",
title = "Characterization, Antibiofilm, and Depolymerizing Activity of Two Phages Active on Carbapenem-ResistantAcinetobacter baumannii",
volume = "7",
doi = "10.3389/fmed.2020.00426"
}
Vukotić, G., Obradović, M., Novović, K., Di Luca, M., Jovčić, B., Fira, Đ., Neve, H., Kojić, M.,& McAuliffe, O.. (2020). Characterization, Antibiofilm, and Depolymerizing Activity of Two Phages Active on Carbapenem-ResistantAcinetobacter baumannii. in Frontiers in Medicine
Frontiers Media Sa, Lausanne., 7.
https://doi.org/10.3389/fmed.2020.00426
Vukotić G, Obradović M, Novović K, Di Luca M, Jovčić B, Fira Đ, Neve H, Kojić M, McAuliffe O. Characterization, Antibiofilm, and Depolymerizing Activity of Two Phages Active on Carbapenem-ResistantAcinetobacter baumannii. in Frontiers in Medicine. 2020;7.
doi:10.3389/fmed.2020.00426 .
Vukotić, Goran, Obradović, Mina, Novović, Katarina, Di Luca, Mariagrazia, Jovčić, Branko, Fira, Đorđe, Neve, Horst, Kojić, Milan, McAuliffe, Olivia, "Characterization, Antibiofilm, and Depolymerizing Activity of Two Phages Active on Carbapenem-ResistantAcinetobacter baumannii" in Frontiers in Medicine, 7 (2020),
https://doi.org/10.3389/fmed.2020.00426 . .
2
44
41

Burkholderia cepacia YtnP and Y2-aiiA lactonases inhibit virulence of Pseudomonas aeruginosa via quorum quenching activity

Malešević, Milka; Stanisavljević, Nemanja; Novović, Katarina; Polović, Natalija; Vasiljević, Zorica; Kojić, Milan; Jovčić, Branko

(Academic Press Ltd- Elsevier Science Ltd, London, 2020)

TY  - JOUR
AU  - Malešević, Milka
AU  - Stanisavljević, Nemanja
AU  - Novović, Katarina
AU  - Polović, Natalija
AU  - Vasiljević, Zorica
AU  - Kojić, Milan
AU  - Jovčić, Branko
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1338
UR  - http://intor.torlakinstitut.com/handle/123456789/705
AB  - Burkholderia cepacia is well known as the causative agent of infections in humans where often shares niche with other pathogens, like Pseudomonas aeruginosa. Clinical isolate Burkholderia sp. BCC4135 was selected due to its strong quorum quenching (QQ) activity. Whole genome sequencing unveiled this isolate as B. cepacia with unique sequence type ST1485 and a myriad of genes belonging to resistome and virulome. Two QQ lactonases YtnP and Y2-aiiA originated from B. cepacia BCC4135 were cloned, expressed, and functionally characterized. They were active against a broad substrate spectrum of the N-acyl-homoserine lactones (AHLs). The YtnP lactonase was inactive, while Y2-aiiA was active against N-tetradecanoyl-DL-homoserine lactone (C14-HSL) which could imply the difference in their biological roles from the aspect of its quorum sensing (QS) autoregulation and interference with the QS systems of bacteria residing within the same niche. Both YtnP and Y2-aiiA were able to attenuate virulence potential of P. aeruginosa MMA83 clinical isolate declining its biofilm formation and virulence factors production. B. cepacia BCC4135 lactonases interfered with the las, rhl, and even pqs QS circuit of P. aeruginosa MMA83 transcription and the effect of combined enzymes was even more prominent. B. cepacia BCC4135 also employs the CepI/R QS system for governing its own virulence traits and possibly self-regulates the QQ/QS network through the different expression and activity of YtnP and/or Y2-aiiA. Our findings pointed out that BCC4135 lactonases could be exploited as an effective antivirulence drugs against P. aeruginosa and gave us a new insight into B. cepacia QQ/QS machinery.
PB  - Academic Press Ltd- Elsevier Science Ltd, London
T2  - Microbial Pathogenesis
T1  - Burkholderia cepacia YtnP and Y2-aiiA lactonases inhibit virulence of Pseudomonas aeruginosa via quorum quenching activity
VL  - 149
DO  - 10.1016/j.micpath.2020.104561
ER  - 
@article{
author = "Malešević, Milka and Stanisavljević, Nemanja and Novović, Katarina and Polović, Natalija and Vasiljević, Zorica and Kojić, Milan and Jovčić, Branko",
year = "2020",
abstract = "Burkholderia cepacia is well known as the causative agent of infections in humans where often shares niche with other pathogens, like Pseudomonas aeruginosa. Clinical isolate Burkholderia sp. BCC4135 was selected due to its strong quorum quenching (QQ) activity. Whole genome sequencing unveiled this isolate as B. cepacia with unique sequence type ST1485 and a myriad of genes belonging to resistome and virulome. Two QQ lactonases YtnP and Y2-aiiA originated from B. cepacia BCC4135 were cloned, expressed, and functionally characterized. They were active against a broad substrate spectrum of the N-acyl-homoserine lactones (AHLs). The YtnP lactonase was inactive, while Y2-aiiA was active against N-tetradecanoyl-DL-homoserine lactone (C14-HSL) which could imply the difference in their biological roles from the aspect of its quorum sensing (QS) autoregulation and interference with the QS systems of bacteria residing within the same niche. Both YtnP and Y2-aiiA were able to attenuate virulence potential of P. aeruginosa MMA83 clinical isolate declining its biofilm formation and virulence factors production. B. cepacia BCC4135 lactonases interfered with the las, rhl, and even pqs QS circuit of P. aeruginosa MMA83 transcription and the effect of combined enzymes was even more prominent. B. cepacia BCC4135 also employs the CepI/R QS system for governing its own virulence traits and possibly self-regulates the QQ/QS network through the different expression and activity of YtnP and/or Y2-aiiA. Our findings pointed out that BCC4135 lactonases could be exploited as an effective antivirulence drugs against P. aeruginosa and gave us a new insight into B. cepacia QQ/QS machinery.",
publisher = "Academic Press Ltd- Elsevier Science Ltd, London",
journal = "Microbial Pathogenesis",
title = "Burkholderia cepacia YtnP and Y2-aiiA lactonases inhibit virulence of Pseudomonas aeruginosa via quorum quenching activity",
volume = "149",
doi = "10.1016/j.micpath.2020.104561"
}
Malešević, M., Stanisavljević, N., Novović, K., Polović, N., Vasiljević, Z., Kojić, M.,& Jovčić, B.. (2020). Burkholderia cepacia YtnP and Y2-aiiA lactonases inhibit virulence of Pseudomonas aeruginosa via quorum quenching activity. in Microbial Pathogenesis
Academic Press Ltd- Elsevier Science Ltd, London., 149.
https://doi.org/10.1016/j.micpath.2020.104561
Malešević M, Stanisavljević N, Novović K, Polović N, Vasiljević Z, Kojić M, Jovčić B. Burkholderia cepacia YtnP and Y2-aiiA lactonases inhibit virulence of Pseudomonas aeruginosa via quorum quenching activity. in Microbial Pathogenesis. 2020;149.
doi:10.1016/j.micpath.2020.104561 .
Malešević, Milka, Stanisavljević, Nemanja, Novović, Katarina, Polović, Natalija, Vasiljević, Zorica, Kojić, Milan, Jovčić, Branko, "Burkholderia cepacia YtnP and Y2-aiiA lactonases inhibit virulence of Pseudomonas aeruginosa via quorum quenching activity" in Microbial Pathogenesis, 149 (2020),
https://doi.org/10.1016/j.micpath.2020.104561 . .
1
14
3
14

Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors

Tomović, Katarina; Ilić, Budimir S.; Smelcerović, Zaklina; Miljković, Marija; Yancheva, Denitsa; Kojić, Milan; Mavrova, Anelia Ts; Kocić, Gordana; Smelcerović, Andrija

(Elsevier Ireland Ltd, Clare, 2020)

TY  - JOUR
AU  - Tomović, Katarina
AU  - Ilić, Budimir S.
AU  - Smelcerović, Zaklina
AU  - Miljković, Marija
AU  - Yancheva, Denitsa
AU  - Kojić, Milan
AU  - Mavrova, Anelia Ts
AU  - Kocić, Gordana
AU  - Smelcerović, Andrija
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1376
UR  - http://intor.torlakinstitut.com/handle/123456789/699
AB  - Multiple-targeting compounds might reduce complex polypharmacy of multifactorial diseases, such as diabetes, and contribute to the greater therapeutic success. Targeting reactive oxygen species-producing enzymes, as xanthine oxidase (XO), might suppress progression of diabetes-associated vascular complications. In this study a small series of benzimidazole derivatives (1-9) was evaluated for inhibitory activity against dipeptidyl peptidase-4 (DPP-4) and XO. One 1,3-disubstituted-benzimidazole-2-imine (5) and 1,3-thiazolo [3,2-a] benzimidazolone derivative (8) were shown as effective dual DPP-4 and XO inhibitors, with IC50 values lower than 200 mu M, and predicted binding modes with both target enzymes. Both selected dual inhibitors (compounds 5 and 8) did not show cytotoxicity to a greater extent on Caco-2 cells even at concentration of 250 mu M. These structures represent new non-purine scaffolds bearing two therapeutic functionalities, being DPP-4 and XO inhibitors, more favorable in comparison to DPP-4 inhibitors with DPP-4 as a single target due to pleiotropic effects of XO inhibition.
PB  - Elsevier Ireland Ltd, Clare
T2  - Chemico-Biological Interactions
T1  - Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors
VL  - 315
DO  - 10.1016/j.cbi.2019.108873
ER  - 
@article{
author = "Tomović, Katarina and Ilić, Budimir S. and Smelcerović, Zaklina and Miljković, Marija and Yancheva, Denitsa and Kojić, Milan and Mavrova, Anelia Ts and Kocić, Gordana and Smelcerović, Andrija",
year = "2020",
abstract = "Multiple-targeting compounds might reduce complex polypharmacy of multifactorial diseases, such as diabetes, and contribute to the greater therapeutic success. Targeting reactive oxygen species-producing enzymes, as xanthine oxidase (XO), might suppress progression of diabetes-associated vascular complications. In this study a small series of benzimidazole derivatives (1-9) was evaluated for inhibitory activity against dipeptidyl peptidase-4 (DPP-4) and XO. One 1,3-disubstituted-benzimidazole-2-imine (5) and 1,3-thiazolo [3,2-a] benzimidazolone derivative (8) were shown as effective dual DPP-4 and XO inhibitors, with IC50 values lower than 200 mu M, and predicted binding modes with both target enzymes. Both selected dual inhibitors (compounds 5 and 8) did not show cytotoxicity to a greater extent on Caco-2 cells even at concentration of 250 mu M. These structures represent new non-purine scaffolds bearing two therapeutic functionalities, being DPP-4 and XO inhibitors, more favorable in comparison to DPP-4 inhibitors with DPP-4 as a single target due to pleiotropic effects of XO inhibition.",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Chemico-Biological Interactions",
title = "Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors",
volume = "315",
doi = "10.1016/j.cbi.2019.108873"
}
Tomović, K., Ilić, B. S., Smelcerović, Z., Miljković, M., Yancheva, D., Kojić, M., Mavrova, A. T., Kocić, G.,& Smelcerović, A.. (2020). Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors. in Chemico-Biological Interactions
Elsevier Ireland Ltd, Clare., 315.
https://doi.org/10.1016/j.cbi.2019.108873
Tomović K, Ilić BS, Smelcerović Z, Miljković M, Yancheva D, Kojić M, Mavrova AT, Kocić G, Smelcerović A. Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors. in Chemico-Biological Interactions. 2020;315.
doi:10.1016/j.cbi.2019.108873 .
Tomović, Katarina, Ilić, Budimir S., Smelcerović, Zaklina, Miljković, Marija, Yancheva, Denitsa, Kojić, Milan, Mavrova, Anelia Ts, Kocić, Gordana, Smelcerović, Andrija, "Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors" in Chemico-Biological Interactions, 315 (2020),
https://doi.org/10.1016/j.cbi.2019.108873 . .
11
14

Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors

Tomović, Katarina; Ilić, Budimir S.; Smelcerović, Zaklina; Miljković, Marija; Yancheva, Denitsa; Kojić, Milan; Mavrova, Anelia Ts; Kocić, Gordana; Smelcerović, Andrija

(Elsevier Ireland Ltd, Clare, 2020)

TY  - JOUR
AU  - Tomović, Katarina
AU  - Ilić, Budimir S.
AU  - Smelcerović, Zaklina
AU  - Miljković, Marija
AU  - Yancheva, Denitsa
AU  - Kojić, Milan
AU  - Mavrova, Anelia Ts
AU  - Kocić, Gordana
AU  - Smelcerović, Andrija
PY  - 2020
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1376
UR  - http://intor.torlakinstitut.com/handle/123456789/698
AB  - Multiple-targeting compounds might reduce complex polypharmacy of multifactorial diseases, such as diabetes, and contribute to the greater therapeutic success. Targeting reactive oxygen species-producing enzymes, as xanthine oxidase (XO), might suppress progression of diabetes-associated vascular complications. In this study a small series of benzimidazole derivatives (1-9) was evaluated for inhibitory activity against dipeptidyl peptidase-4 (DPP-4) and XO. One 1,3-disubstituted-benzimidazole-2-imine (5) and 1,3-thiazolo [3,2-a] benzimidazolone derivative (8) were shown as effective dual DPP-4 and XO inhibitors, with IC50 values lower than 200 mu M, and predicted binding modes with both target enzymes. Both selected dual inhibitors (compounds 5 and 8) did not show cytotoxicity to a greater extent on Caco-2 cells even at concentration of 250 mu M. These structures represent new non-purine scaffolds bearing two therapeutic functionalities, being DPP-4 and XO inhibitors, more favorable in comparison to DPP-4 inhibitors with DPP-4 as a single target due to pleiotropic effects of XO inhibition.
PB  - Elsevier Ireland Ltd, Clare
T2  - Chemico-Biological Interactions
T1  - Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors
VL  - 315
DO  - 10.1016/j.cbi.2019.108873
ER  - 
@article{
author = "Tomović, Katarina and Ilić, Budimir S. and Smelcerović, Zaklina and Miljković, Marija and Yancheva, Denitsa and Kojić, Milan and Mavrova, Anelia Ts and Kocić, Gordana and Smelcerović, Andrija",
year = "2020",
abstract = "Multiple-targeting compounds might reduce complex polypharmacy of multifactorial diseases, such as diabetes, and contribute to the greater therapeutic success. Targeting reactive oxygen species-producing enzymes, as xanthine oxidase (XO), might suppress progression of diabetes-associated vascular complications. In this study a small series of benzimidazole derivatives (1-9) was evaluated for inhibitory activity against dipeptidyl peptidase-4 (DPP-4) and XO. One 1,3-disubstituted-benzimidazole-2-imine (5) and 1,3-thiazolo [3,2-a] benzimidazolone derivative (8) were shown as effective dual DPP-4 and XO inhibitors, with IC50 values lower than 200 mu M, and predicted binding modes with both target enzymes. Both selected dual inhibitors (compounds 5 and 8) did not show cytotoxicity to a greater extent on Caco-2 cells even at concentration of 250 mu M. These structures represent new non-purine scaffolds bearing two therapeutic functionalities, being DPP-4 and XO inhibitors, more favorable in comparison to DPP-4 inhibitors with DPP-4 as a single target due to pleiotropic effects of XO inhibition.",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Chemico-Biological Interactions",
title = "Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors",
volume = "315",
doi = "10.1016/j.cbi.2019.108873"
}
Tomović, K., Ilić, B. S., Smelcerović, Z., Miljković, M., Yancheva, D., Kojić, M., Mavrova, A. T., Kocić, G.,& Smelcerović, A.. (2020). Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors. in Chemico-Biological Interactions
Elsevier Ireland Ltd, Clare., 315.
https://doi.org/10.1016/j.cbi.2019.108873
Tomović K, Ilić BS, Smelcerović Z, Miljković M, Yancheva D, Kojić M, Mavrova AT, Kocić G, Smelcerović A. Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors. in Chemico-Biological Interactions. 2020;315.
doi:10.1016/j.cbi.2019.108873 .
Tomović, Katarina, Ilić, Budimir S., Smelcerović, Zaklina, Miljković, Marija, Yancheva, Denitsa, Kojić, Milan, Mavrova, Anelia Ts, Kocić, Gordana, Smelcerović, Andrija, "Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors" in Chemico-Biological Interactions, 315 (2020),
https://doi.org/10.1016/j.cbi.2019.108873 . .
11
14

Fluoroquinolone-resistant Achromobacter xylosoxidans clinical isolates from Serbia: high prevalence of the aac-(6)-Ib-cr gene among resistant isolates

Lilić, Branislav; Filipić, Brankica; Malešević, Milka; Novović, Katarina; Vasiljević, Zorica; Kojić, Milan; Jovčić, Branko

(Springer, Dordrecht, 2019)

TY  - JOUR
AU  - Lilić, Branislav
AU  - Filipić, Brankica
AU  - Malešević, Milka
AU  - Novović, Katarina
AU  - Vasiljević, Zorica
AU  - Kojić, Milan
AU  - Jovčić, Branko
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1278
UR  - http://intor.torlakinstitut.com/handle/123456789/742
AB  - The aim of this study was to evaluate the contribution of plasmid-mediated genes and efflux to fluoroquinolone resistance in collection of Achromobacter spp. gathered during a 3-year period. Susceptibility to ciprofloxacin and levofloxacin was tested by disk diffusion and microdilution tests for a collection of 98 Achromobacter spp. clinical isolates. Identification of fluoroquinolone-resistant isolates was performed by sequencing and phylogenetic analyses of the nrdA gene. Genetic relatedness among resistant isolates was determined by pulsed-field gel electrophoresis (PFGE) analysis. The influence of an H+ conductor cyanide m-chlorophenyl hydrazone (CCCP) and a resistance-nodulation-division-type efflux pump inhibitor phenylalanine-arginine beta-naphthylamide (PAN) on minimal inhibitory concentration (MIC) value was evaluated by broth microdilution. The presence of the plasmid-mediated qnrA, qnrB, qnrC, qnrS, and aac-(6)-Ib-cr genes was investigated by PCR and sequencing. Achromobacter spp. isolates that were resistant or intermediately resistant to fluoroquinolones in disk diffusion tests (44/98) were subjected to microdilution. As a result, 20/98 isolates were confirmed to be resistant to ciprofloxacin while 10/98 was resistant to levofloxacin. CCCP decreased twofold MIC value for ciprofloxacin in six isolates and more than 16 times in one isolate, while MIC value for levofloxacin was decreased in all isolates (twofold to more than eightfold). Fluoroquinolone-resistant isolates were identified as A. xylosoxidans with the nrdA gene sequencing. PFGE revealed that resistant isolates belonged to seven different genotypes. Ten isolates belonging to four genotypes were positive for the aac-(6)-Ib-cr gene. Although resistance to fluoroquinolones was not widespread among analyzed isolates, detected contribution of efflux pumps and the presence of the aac-(6)-Ib-cr gene present a platform for emergence of more resistant strains.
PB  - Springer, Dordrecht
T2  - Folia Microbiologica
T1  - Fluoroquinolone-resistant Achromobacter xylosoxidans clinical isolates from Serbia: high prevalence of the aac-(6)-Ib-cr gene among resistant isolates
EP  - 159
IS  - 2
SP  - 153
VL  - 64
DO  - 10.1007/s12223-018-0639-7
ER  - 
@article{
author = "Lilić, Branislav and Filipić, Brankica and Malešević, Milka and Novović, Katarina and Vasiljević, Zorica and Kojić, Milan and Jovčić, Branko",
year = "2019",
abstract = "The aim of this study was to evaluate the contribution of plasmid-mediated genes and efflux to fluoroquinolone resistance in collection of Achromobacter spp. gathered during a 3-year period. Susceptibility to ciprofloxacin and levofloxacin was tested by disk diffusion and microdilution tests for a collection of 98 Achromobacter spp. clinical isolates. Identification of fluoroquinolone-resistant isolates was performed by sequencing and phylogenetic analyses of the nrdA gene. Genetic relatedness among resistant isolates was determined by pulsed-field gel electrophoresis (PFGE) analysis. The influence of an H+ conductor cyanide m-chlorophenyl hydrazone (CCCP) and a resistance-nodulation-division-type efflux pump inhibitor phenylalanine-arginine beta-naphthylamide (PAN) on minimal inhibitory concentration (MIC) value was evaluated by broth microdilution. The presence of the plasmid-mediated qnrA, qnrB, qnrC, qnrS, and aac-(6)-Ib-cr genes was investigated by PCR and sequencing. Achromobacter spp. isolates that were resistant or intermediately resistant to fluoroquinolones in disk diffusion tests (44/98) were subjected to microdilution. As a result, 20/98 isolates were confirmed to be resistant to ciprofloxacin while 10/98 was resistant to levofloxacin. CCCP decreased twofold MIC value for ciprofloxacin in six isolates and more than 16 times in one isolate, while MIC value for levofloxacin was decreased in all isolates (twofold to more than eightfold). Fluoroquinolone-resistant isolates were identified as A. xylosoxidans with the nrdA gene sequencing. PFGE revealed that resistant isolates belonged to seven different genotypes. Ten isolates belonging to four genotypes were positive for the aac-(6)-Ib-cr gene. Although resistance to fluoroquinolones was not widespread among analyzed isolates, detected contribution of efflux pumps and the presence of the aac-(6)-Ib-cr gene present a platform for emergence of more resistant strains.",
publisher = "Springer, Dordrecht",
journal = "Folia Microbiologica",
title = "Fluoroquinolone-resistant Achromobacter xylosoxidans clinical isolates from Serbia: high prevalence of the aac-(6)-Ib-cr gene among resistant isolates",
pages = "159-153",
number = "2",
volume = "64",
doi = "10.1007/s12223-018-0639-7"
}
Lilić, B., Filipić, B., Malešević, M., Novović, K., Vasiljević, Z., Kojić, M.,& Jovčić, B.. (2019). Fluoroquinolone-resistant Achromobacter xylosoxidans clinical isolates from Serbia: high prevalence of the aac-(6)-Ib-cr gene among resistant isolates. in Folia Microbiologica
Springer, Dordrecht., 64(2), 153-159.
https://doi.org/10.1007/s12223-018-0639-7
Lilić B, Filipić B, Malešević M, Novović K, Vasiljević Z, Kojić M, Jovčić B. Fluoroquinolone-resistant Achromobacter xylosoxidans clinical isolates from Serbia: high prevalence of the aac-(6)-Ib-cr gene among resistant isolates. in Folia Microbiologica. 2019;64(2):153-159.
doi:10.1007/s12223-018-0639-7 .
Lilić, Branislav, Filipić, Brankica, Malešević, Milka, Novović, Katarina, Vasiljević, Zorica, Kojić, Milan, Jovčić, Branko, "Fluoroquinolone-resistant Achromobacter xylosoxidans clinical isolates from Serbia: high prevalence of the aac-(6)-Ib-cr gene among resistant isolates" in Folia Microbiologica, 64, no. 2 (2019):153-159,
https://doi.org/10.1007/s12223-018-0639-7 . .
1
2
2
3