Mirković, Nemanja

Link to this page

Authority KeyName Variants
5ed44647-2812-45e8-888b-bba3351e28bf
  • Mirković, Nemanja (8)

Author's Bibliography

Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants

Malešević, Milka; Gardijan, Lazar; Miljković, Marija; O'Connor, Paula M; Mirković, Nemanja; Jovčić, Branko; Cotter, Paul D; Jovanovic, Goran; Kojić, Milan

(2023)

TY  - JOUR
AU  - Malešević, Milka
AU  - Gardijan, Lazar
AU  - Miljković, Marija
AU  - O'Connor, Paula M
AU  - Mirković, Nemanja
AU  - Jovčić, Branko
AU  - Cotter, Paul D
AU  - Jovanovic, Goran
AU  - Kojić, Milan
PY  - 2023
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1828
UR  - http://intor.torlakinstitut.com/handle/123456789/740
AB  - Lactic acid bacterium Lactococcus lactis BGBU1-4 produces 43 amino acids (aa) long bacteriocin, lactolisterin BU (LBU), a 5.161 kDa peptide with potent antibacterial activity against many Gram-positive pathogens. In addition, BGBU1-4 produces an additional unknown product of 3.642 kDa with antibacterial activity. Here, we determined that the significant amount of naturally produced LBU breaks down to create a 3.642 kDa truncated form of LBU bacteriocin consisting of 31 N-terminal aa (LBU1-31) that exhibits 12.5% the antibacterial activity of the full-length LBU. We showed that chemically synthesized LBU is stable and 50% less active than native LBU, and so we used the synthetic peptides of LBU and its variants to further study their activities and antibacterial potential. Deletion analysis of LBU revealed that the 24 N-terminal aa of LBU (LBU1-24) are responsible for antibacterial activity, while downstream aa (25–43) determine the species-specific effectiveness of LBU. Although LBU1-31 contains aa 1–24, the truncation at position 31 is predicted to change the structure within aa 15–31 and might impact on antibacterial activity. Intriguingly, whole genome sequencing and genome mining established that BGBU1-4 is abundant in genes that encode potential antibacterials, but produces LBU and its breakdown product LBU1-31 exclusively.
T2  - Letters in Applied Microbiology
T2  - Letters in Applied MicrobiologyLetters in Applied Microbiology
T1  - Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants
IS  - 2
SP  - ovad004
VL  - 76
DO  - 10.1093/lambio/ovad004
ER  - 
@article{
author = "Malešević, Milka and Gardijan, Lazar and Miljković, Marija and O'Connor, Paula M and Mirković, Nemanja and Jovčić, Branko and Cotter, Paul D and Jovanovic, Goran and Kojić, Milan",
year = "2023",
abstract = "Lactic acid bacterium Lactococcus lactis BGBU1-4 produces 43 amino acids (aa) long bacteriocin, lactolisterin BU (LBU), a 5.161 kDa peptide with potent antibacterial activity against many Gram-positive pathogens. In addition, BGBU1-4 produces an additional unknown product of 3.642 kDa with antibacterial activity. Here, we determined that the significant amount of naturally produced LBU breaks down to create a 3.642 kDa truncated form of LBU bacteriocin consisting of 31 N-terminal aa (LBU1-31) that exhibits 12.5% the antibacterial activity of the full-length LBU. We showed that chemically synthesized LBU is stable and 50% less active than native LBU, and so we used the synthetic peptides of LBU and its variants to further study their activities and antibacterial potential. Deletion analysis of LBU revealed that the 24 N-terminal aa of LBU (LBU1-24) are responsible for antibacterial activity, while downstream aa (25–43) determine the species-specific effectiveness of LBU. Although LBU1-31 contains aa 1–24, the truncation at position 31 is predicted to change the structure within aa 15–31 and might impact on antibacterial activity. Intriguingly, whole genome sequencing and genome mining established that BGBU1-4 is abundant in genes that encode potential antibacterials, but produces LBU and its breakdown product LBU1-31 exclusively.",
journal = "Letters in Applied Microbiology, Letters in Applied MicrobiologyLetters in Applied Microbiology",
title = "Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants",
number = "2",
pages = "ovad004",
volume = "76",
doi = "10.1093/lambio/ovad004"
}
Malešević, M., Gardijan, L., Miljković, M., O'Connor, P. M., Mirković, N., Jovčić, B., Cotter, P. D., Jovanovic, G.,& Kojić, M.. (2023). Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants. in Letters in Applied Microbiology, 76(2), ovad004.
https://doi.org/10.1093/lambio/ovad004
Malešević M, Gardijan L, Miljković M, O'Connor PM, Mirković N, Jovčić B, Cotter PD, Jovanovic G, Kojić M. Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants. in Letters in Applied Microbiology. 2023;76(2):ovad004.
doi:10.1093/lambio/ovad004 .
Malešević, Milka, Gardijan, Lazar, Miljković, Marija, O'Connor, Paula M, Mirković, Nemanja, Jovčić, Branko, Cotter, Paul D, Jovanovic, Goran, Kojić, Milan, "Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants" in Letters in Applied Microbiology, 76, no. 2 (2023):ovad004,
https://doi.org/10.1093/lambio/ovad004 . .
1
2
1

C-protein alpha-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae

Mirković, Nemanja; Obradović, Mina; O'Connor, Paula M.; Filipić, Brankica; Jovčić, Branko; Cotter, Paul D.; Kojić, Milan

(Springer, Dordrecht, 2021)

TY  - JOUR
AU  - Mirković, Nemanja
AU  - Obradović, Mina
AU  - O'Connor, Paula M.
AU  - Filipić, Brankica
AU  - Jovčić, Branko
AU  - Cotter, Paul D.
AU  - Kojić, Milan
PY  - 2021
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1429
UR  - http://intor.torlakinstitut.com/handle/123456789/706
AB  - Screening for producers of potent antimicrobial peptides, resulted in the isolation of Bacillus cereus BGNM1 with strong antimicrobial activity against Listeria monocytogenes. Genome sequence analysis revealed that BGNM1 contains the gene cluster associated with the production of the lantibiotic, thusin, previously identified in B. thuringiensis. Purification of the antimicrobial activity confirmed that strain BGMN1 produces thusin. Both thusin sensitive and resistant strains were detected among clinical isolates of Streptococcus agalactiae. Random mutagenesis of a thusin sensitive strain, S. agalactiae B782, was performed in an attempt to identify the receptor protein for thusin. Three independent thusin resistant mutants were selected and their complete genomes sequenced. Comparative sequence analysis of these mutants with the WT strain revealed that duplication of a region encoding a 79 amino acids repeat in a C-protein alpha-antigen was a common difference, suggesting it to be responsible for increased resistance to thusin. Since induced thusin resistant mutants showed higher level of resistance than the naturally resistant B761 strain, complete genome sequencing of strain B761 was performed to check the integrity of the C-protein alpha-antigen-encoding gene. This analysis revealed that this gene is deleted in B761, providing further evidence that this protein promotes interaction of the thusin with receptor.
PB  - Springer, Dordrecht
T2  - Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology
T1  - C-protein alpha-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae
EP  - 1607
IS  - 10
SP  - 1595
VL  - 114
DO  - 10.1007/s10482-021-01626-3
ER  - 
@article{
author = "Mirković, Nemanja and Obradović, Mina and O'Connor, Paula M. and Filipić, Brankica and Jovčić, Branko and Cotter, Paul D. and Kojić, Milan",
year = "2021",
abstract = "Screening for producers of potent antimicrobial peptides, resulted in the isolation of Bacillus cereus BGNM1 with strong antimicrobial activity against Listeria monocytogenes. Genome sequence analysis revealed that BGNM1 contains the gene cluster associated with the production of the lantibiotic, thusin, previously identified in B. thuringiensis. Purification of the antimicrobial activity confirmed that strain BGMN1 produces thusin. Both thusin sensitive and resistant strains were detected among clinical isolates of Streptococcus agalactiae. Random mutagenesis of a thusin sensitive strain, S. agalactiae B782, was performed in an attempt to identify the receptor protein for thusin. Three independent thusin resistant mutants were selected and their complete genomes sequenced. Comparative sequence analysis of these mutants with the WT strain revealed that duplication of a region encoding a 79 amino acids repeat in a C-protein alpha-antigen was a common difference, suggesting it to be responsible for increased resistance to thusin. Since induced thusin resistant mutants showed higher level of resistance than the naturally resistant B761 strain, complete genome sequencing of strain B761 was performed to check the integrity of the C-protein alpha-antigen-encoding gene. This analysis revealed that this gene is deleted in B761, providing further evidence that this protein promotes interaction of the thusin with receptor.",
publisher = "Springer, Dordrecht",
journal = "Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology",
title = "C-protein alpha-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae",
pages = "1607-1595",
number = "10",
volume = "114",
doi = "10.1007/s10482-021-01626-3"
}
Mirković, N., Obradović, M., O'Connor, P. M., Filipić, B., Jovčić, B., Cotter, P. D.,& Kojić, M.. (2021). C-protein alpha-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae. in Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology
Springer, Dordrecht., 114(10), 1595-1607.
https://doi.org/10.1007/s10482-021-01626-3
Mirković N, Obradović M, O'Connor PM, Filipić B, Jovčić B, Cotter PD, Kojić M. C-protein alpha-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae. in Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology. 2021;114(10):1595-1607.
doi:10.1007/s10482-021-01626-3 .
Mirković, Nemanja, Obradović, Mina, O'Connor, Paula M., Filipić, Brankica, Jovčić, Branko, Cotter, Paul D., Kojić, Milan, "C-protein alpha-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae" in Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 114, no. 10 (2021):1595-1607,
https://doi.org/10.1007/s10482-021-01626-3 . .
3
1
1

Supplementary material for: Popović, M.; Stojanović, M.; Veličković, Z.; Kovačević, A.; Miljković, R.; Mirković, N.; Marinković, A. D. Characterization of Potential Probiotic Strain, L. Reuteri B2, and Its Microencapsulation Using Alginate-Based Biopolymers. International Journal of Biological Macromolecules 2021, 183, 423–434. https://doi.org/10.1016/j.ijbiomac.2021.04.177.

Popović, Mina; Stojanović, Marijana; Veličković, Zlate; Kovačević, Ana; Miljković, Radmila; Mirković, Nemanja; Marinković, Aleksandar D.

(Elsevier, 2021)

TY  - DATA
AU  - Popović, Mina
AU  - Stojanović, Marijana
AU  - Veličković, Zlate
AU  - Kovačević, Ana
AU  - Miljković, Radmila
AU  - Mirković, Nemanja
AU  - Marinković, Aleksandar D.
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4596
UR  - http://intor.torlakinstitut.com/handle/123456789/627
AB  - Preparation of materials for encapsulation (Materials, Laboratory isolation of ricinoleic acid, Laboratory preparation of starch maleate monoester, Characterization, Statistical analysis). Additional results (Antimicrobial activity, Optimization of encapsulation yield, Size distribution of alginate beads in acidic conditions). additional references
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Supplementary material for: Popović, M.; Stojanović, M.; Veličković, Z.; Kovačević, A.; Miljković, R.; Mirković, N.; Marinković, A. D. Characterization of Potential Probiotic Strain, L. Reuteri B2, and Its Microencapsulation Using Alginate-Based Biopolymers. International Journal of Biological Macromolecules 2021, 183, 423–434. https://doi.org/10.1016/j.ijbiomac.2021.04.177.
UR  - https://hdl.handle.net/21.15107/rcub_intor_627
ER  - 
@misc{
author = "Popović, Mina and Stojanović, Marijana and Veličković, Zlate and Kovačević, Ana and Miljković, Radmila and Mirković, Nemanja and Marinković, Aleksandar D.",
year = "2021",
abstract = "Preparation of materials for encapsulation (Materials, Laboratory isolation of ricinoleic acid, Laboratory preparation of starch maleate monoester, Characterization, Statistical analysis). Additional results (Antimicrobial activity, Optimization of encapsulation yield, Size distribution of alginate beads in acidic conditions). additional references",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Supplementary material for: Popović, M.; Stojanović, M.; Veličković, Z.; Kovačević, A.; Miljković, R.; Mirković, N.; Marinković, A. D. Characterization of Potential Probiotic Strain, L. Reuteri B2, and Its Microencapsulation Using Alginate-Based Biopolymers. International Journal of Biological Macromolecules 2021, 183, 423–434. https://doi.org/10.1016/j.ijbiomac.2021.04.177.",
url = "https://hdl.handle.net/21.15107/rcub_intor_627"
}
Popović, M., Stojanović, M., Veličković, Z., Kovačević, A., Miljković, R., Mirković, N.,& Marinković, A. D.. (2021). Supplementary material for: Popović, M.; Stojanović, M.; Veličković, Z.; Kovačević, A.; Miljković, R.; Mirković, N.; Marinković, A. D. Characterization of Potential Probiotic Strain, L. Reuteri B2, and Its Microencapsulation Using Alginate-Based Biopolymers. International Journal of Biological Macromolecules 2021, 183, 423–434. https://doi.org/10.1016/j.ijbiomac.2021.04.177.. in International Journal of Biological Macromolecules
Elsevier..
https://hdl.handle.net/21.15107/rcub_intor_627
Popović M, Stojanović M, Veličković Z, Kovačević A, Miljković R, Mirković N, Marinković AD. Supplementary material for: Popović, M.; Stojanović, M.; Veličković, Z.; Kovačević, A.; Miljković, R.; Mirković, N.; Marinković, A. D. Characterization of Potential Probiotic Strain, L. Reuteri B2, and Its Microencapsulation Using Alginate-Based Biopolymers. International Journal of Biological Macromolecules 2021, 183, 423–434. https://doi.org/10.1016/j.ijbiomac.2021.04.177.. in International Journal of Biological Macromolecules. 2021;.
https://hdl.handle.net/21.15107/rcub_intor_627 .
Popović, Mina, Stojanović, Marijana, Veličković, Zlate, Kovačević, Ana, Miljković, Radmila, Mirković, Nemanja, Marinković, Aleksandar D., "Supplementary material for: Popović, M.; Stojanović, M.; Veličković, Z.; Kovačević, A.; Miljković, R.; Mirković, N.; Marinković, A. D. Characterization of Potential Probiotic Strain, L. Reuteri B2, and Its Microencapsulation Using Alginate-Based Biopolymers. International Journal of Biological Macromolecules 2021, 183, 423–434. https://doi.org/10.1016/j.ijbiomac.2021.04.177." in International Journal of Biological Macromolecules (2021),
https://hdl.handle.net/21.15107/rcub_intor_627 .
2
11

Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers

Popović, Mina; Stojanović, Marijana; Veličković, Zlate; Kovačević, Ana; Miljković, Radmila; Mirković, Nemanja; Marinković, Aleksandar D.

(Elsevier, 2021)

TY  - JOUR
AU  - Popović, Mina
AU  - Stojanović, Marijana
AU  - Veličković, Zlate
AU  - Kovačević, Ana
AU  - Miljković, Radmila
AU  - Mirković, Nemanja
AU  - Marinković, Aleksandar D.
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4595
UR  - http://intor.torlakinstitut.com/handle/123456789/628
AB  - In this study, Lactobacillus reuteri B2was isolated fromthe feces of C57BL/6 mice and assessed on probiotic activity.L. reuteri B2was identified by 16S rDNA sequencing, which the cell viability in acidic conditions at pH 2.0was64% after 2 h, and in the presents of 0.30% of the bile salts, after 6 h, was 37%. Antimicrobial assay with L. reuteri B2showed maximumdiameters against Klebsiela oxytoca J7 (12.5±0.71mm).Wefurther hypothesized if L. reuteriB2 strain in the free form can survive all conditions in the gastrointestinal tract (GIT) then the utilization of theappropriate biomaterials would ameliorate its stability and viability in GIT. L. reuteri B2 was microencapsulatedinto sodium alginate-(Na-alg) and different content of Na-alg and sodium maleate (SM) beads. Characterizationmaterials enveloped their thermal characteristics (TGA/DTA analysis) and structure using: scanning electron microscopy(SEM), FTIR, and particle size distribution. The high survival rate of L. reuteri B2 at lowpH from2.0 to 4.0and in the presence of the bile salts, at concentrations up to 0.30%, was obtained. L. reuteri B2 showed strong antimicrobialactivity and the best protection microencapsulated with Na-alg + SM in simulated gastric juices(SGJ).
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers
EP  - 434
SP  - 423
VL  - 183
DO  - 10.1016/j.ijbiomac.2021.04.177
ER  - 
@article{
author = "Popović, Mina and Stojanović, Marijana and Veličković, Zlate and Kovačević, Ana and Miljković, Radmila and Mirković, Nemanja and Marinković, Aleksandar D.",
year = "2021",
abstract = "In this study, Lactobacillus reuteri B2was isolated fromthe feces of C57BL/6 mice and assessed on probiotic activity.L. reuteri B2was identified by 16S rDNA sequencing, which the cell viability in acidic conditions at pH 2.0was64% after 2 h, and in the presents of 0.30% of the bile salts, after 6 h, was 37%. Antimicrobial assay with L. reuteri B2showed maximumdiameters against Klebsiela oxytoca J7 (12.5±0.71mm).Wefurther hypothesized if L. reuteriB2 strain in the free form can survive all conditions in the gastrointestinal tract (GIT) then the utilization of theappropriate biomaterials would ameliorate its stability and viability in GIT. L. reuteri B2 was microencapsulatedinto sodium alginate-(Na-alg) and different content of Na-alg and sodium maleate (SM) beads. Characterizationmaterials enveloped their thermal characteristics (TGA/DTA analysis) and structure using: scanning electron microscopy(SEM), FTIR, and particle size distribution. The high survival rate of L. reuteri B2 at lowpH from2.0 to 4.0and in the presence of the bile salts, at concentrations up to 0.30%, was obtained. L. reuteri B2 showed strong antimicrobialactivity and the best protection microencapsulated with Na-alg + SM in simulated gastric juices(SGJ).",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers",
pages = "434-423",
volume = "183",
doi = "10.1016/j.ijbiomac.2021.04.177"
}
Popović, M., Stojanović, M., Veličković, Z., Kovačević, A., Miljković, R., Mirković, N.,& Marinković, A. D.. (2021). Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers. in International Journal of Biological Macromolecules
Elsevier., 183, 423-434.
https://doi.org/10.1016/j.ijbiomac.2021.04.177
Popović M, Stojanović M, Veličković Z, Kovačević A, Miljković R, Mirković N, Marinković AD. Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers. in International Journal of Biological Macromolecules. 2021;183:423-434.
doi:10.1016/j.ijbiomac.2021.04.177 .
Popović, Mina, Stojanović, Marijana, Veličković, Zlate, Kovačević, Ana, Miljković, Radmila, Mirković, Nemanja, Marinković, Aleksandar D., "Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers" in International Journal of Biological Macromolecules, 183 (2021):423-434,
https://doi.org/10.1016/j.ijbiomac.2021.04.177 . .
14
2
11

Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers

Popović, Mina; Stojanović, Marijana; Veličković, Zlate; Kovačević, Ana; Miljković, Radmila; Mirković, Nemanja; Marinković, Aleksandar D.

(Elsevier, 2021)

TY  - JOUR
AU  - Popović, Mina
AU  - Stojanović, Marijana
AU  - Veličković, Zlate
AU  - Kovačević, Ana
AU  - Miljković, Radmila
AU  - Mirković, Nemanja
AU  - Marinković, Aleksandar D.
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4594
UR  - http://intor.torlakinstitut.com/handle/123456789/626
AB  - In this study, Lactobacillus reuteri B2was isolated fromthe feces of C57BL/6 mice and assessed on probiotic activity.L. reuteri B2was identified by 16S rDNA sequencing, which the cell viability in acidic conditions at pH 2.0was64% after 2 h, and in the presents of 0.30% of the bile salts, after 6 h, was 37%. Antimicrobial assay with L. reuteri B2showed maximumdiameters against Klebsiela oxytoca J7 (12.5±0.71mm).Wefurther hypothesized if L. reuteriB2 strain in the free form can survive all conditions in the gastrointestinal tract (GIT) then the utilization of theappropriate biomaterials would ameliorate its stability and viability in GIT. L. reuteri B2 was microencapsulatedinto sodium alginate-(Na-alg) and different content of Na-alg and sodium maleate (SM) beads. Characterizationmaterials enveloped their thermal characteristics (TGA/DTA analysis) and structure using: scanning electron microscopy(SEM), FTIR, and particle size distribution. The high survival rate of L. reuteri B2 at lowpH from2.0 to 4.0and in the presence of the bile salts, at concentrations up to 0.30%, was obtained. L. reuteri B2 showed strong antimicrobialactivity and the best protection microencapsulated with Na-alg + SM in simulated gastric juices(SGJ).
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers
EP  - 434
SP  - 423
VL  - 183
DO  - 10.1016/j.ijbiomac.2021.04.177
ER  - 
@article{
author = "Popović, Mina and Stojanović, Marijana and Veličković, Zlate and Kovačević, Ana and Miljković, Radmila and Mirković, Nemanja and Marinković, Aleksandar D.",
year = "2021",
abstract = "In this study, Lactobacillus reuteri B2was isolated fromthe feces of C57BL/6 mice and assessed on probiotic activity.L. reuteri B2was identified by 16S rDNA sequencing, which the cell viability in acidic conditions at pH 2.0was64% after 2 h, and in the presents of 0.30% of the bile salts, after 6 h, was 37%. Antimicrobial assay with L. reuteri B2showed maximumdiameters against Klebsiela oxytoca J7 (12.5±0.71mm).Wefurther hypothesized if L. reuteriB2 strain in the free form can survive all conditions in the gastrointestinal tract (GIT) then the utilization of theappropriate biomaterials would ameliorate its stability and viability in GIT. L. reuteri B2 was microencapsulatedinto sodium alginate-(Na-alg) and different content of Na-alg and sodium maleate (SM) beads. Characterizationmaterials enveloped their thermal characteristics (TGA/DTA analysis) and structure using: scanning electron microscopy(SEM), FTIR, and particle size distribution. The high survival rate of L. reuteri B2 at lowpH from2.0 to 4.0and in the presence of the bile salts, at concentrations up to 0.30%, was obtained. L. reuteri B2 showed strong antimicrobialactivity and the best protection microencapsulated with Na-alg + SM in simulated gastric juices(SGJ).",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers",
pages = "434-423",
volume = "183",
doi = "10.1016/j.ijbiomac.2021.04.177"
}
Popović, M., Stojanović, M., Veličković, Z., Kovačević, A., Miljković, R., Mirković, N.,& Marinković, A. D.. (2021). Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers. in International Journal of Biological Macromolecules
Elsevier., 183, 423-434.
https://doi.org/10.1016/j.ijbiomac.2021.04.177
Popović M, Stojanović M, Veličković Z, Kovačević A, Miljković R, Mirković N, Marinković AD. Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers. in International Journal of Biological Macromolecules. 2021;183:423-434.
doi:10.1016/j.ijbiomac.2021.04.177 .
Popović, Mina, Stojanović, Marijana, Veličković, Zlate, Kovačević, Ana, Miljković, Radmila, Mirković, Nemanja, Marinković, Aleksandar D., "Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers" in International Journal of Biological Macromolecules, 183 (2021):423-434,
https://doi.org/10.1016/j.ijbiomac.2021.04.177 . .
14
2
11

Bacterial Diversity among the Sediments of Glacial Lakes in the Western Balkans: Exploring the Impact of Human Population

Malešević, Milka; Mirković, Nemanja; Lozo, Jelena; Novović, Katarina; Filipić, Brankica; Kojić, Milan; Jovčić, Branko

(Taylor & Francis, 2019)

TY  - JOUR
AU  - Malešević, Milka
AU  - Mirković, Nemanja
AU  - Lozo, Jelena
AU  - Novović, Katarina
AU  - Filipić, Brankica
AU  - Kojić, Milan
AU  - Jovčić, Branko
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1297
UR  - http://intor.torlakinstitut.com/handle/123456789/696
AB  - 16S rRNA gene-based metagenomic approach was used to assess the biodiversity of bacterial communities in the sediments of selected glacial lakes in the Western Balkans and to assess the impact of human population on these microbial communities. Sediment samples were collected from three glacial lakes, viz., Plav Lake (in a zone of the highest impact of human population), Black Lake (a zone of medium impact of human population), and Donje Bare Lake (a remote lake with minimal impact of human population). Canonical correlation analysis analysis indicated correlation between the distance of the lake from urbanized population and bacterial diversity in Donje Bare Lake sediment. Bacterial diversity of Black Lake sediment was correlated with high content of phosphorous and pH value. Chemical compounds exhibiting the most prominent correlation with bacterial diversity of Plav Lake were NH4-N, K2O, CaCo3, and total nitrogen . Additionally, CCA analysis indicated that population density was correlated with biodiversity of bacterial communities in Plav Lake sediment, which is the most exposed to human population. Multivariate regression revealed the highest correlation between the presence of Proteobacteria classes and population density and levels of NH4-N. The influence of human population was observed to be important for shaping the sediment communities in addition to biological and chemical factors.
PB  - Taylor & Francis
T2  - Geomicrobiology Journal
T1  - Bacterial Diversity among the Sediments of Glacial Lakes in the Western Balkans: Exploring the Impact of Human Population
EP  - 270
IS  - 3
SP  - 261
VL  - 36
DO  - 10.1080/01490451.2018.1550128
ER  - 
@article{
author = "Malešević, Milka and Mirković, Nemanja and Lozo, Jelena and Novović, Katarina and Filipić, Brankica and Kojić, Milan and Jovčić, Branko",
year = "2019",
abstract = "16S rRNA gene-based metagenomic approach was used to assess the biodiversity of bacterial communities in the sediments of selected glacial lakes in the Western Balkans and to assess the impact of human population on these microbial communities. Sediment samples were collected from three glacial lakes, viz., Plav Lake (in a zone of the highest impact of human population), Black Lake (a zone of medium impact of human population), and Donje Bare Lake (a remote lake with minimal impact of human population). Canonical correlation analysis analysis indicated correlation between the distance of the lake from urbanized population and bacterial diversity in Donje Bare Lake sediment. Bacterial diversity of Black Lake sediment was correlated with high content of phosphorous and pH value. Chemical compounds exhibiting the most prominent correlation with bacterial diversity of Plav Lake were NH4-N, K2O, CaCo3, and total nitrogen . Additionally, CCA analysis indicated that population density was correlated with biodiversity of bacterial communities in Plav Lake sediment, which is the most exposed to human population. Multivariate regression revealed the highest correlation between the presence of Proteobacteria classes and population density and levels of NH4-N. The influence of human population was observed to be important for shaping the sediment communities in addition to biological and chemical factors.",
publisher = "Taylor & Francis",
journal = "Geomicrobiology Journal",
title = "Bacterial Diversity among the Sediments of Glacial Lakes in the Western Balkans: Exploring the Impact of Human Population",
pages = "270-261",
number = "3",
volume = "36",
doi = "10.1080/01490451.2018.1550128"
}
Malešević, M., Mirković, N., Lozo, J., Novović, K., Filipić, B., Kojić, M.,& Jovčić, B.. (2019). Bacterial Diversity among the Sediments of Glacial Lakes in the Western Balkans: Exploring the Impact of Human Population. in Geomicrobiology Journal
Taylor & Francis., 36(3), 261-270.
https://doi.org/10.1080/01490451.2018.1550128
Malešević M, Mirković N, Lozo J, Novović K, Filipić B, Kojić M, Jovčić B. Bacterial Diversity among the Sediments of Glacial Lakes in the Western Balkans: Exploring the Impact of Human Population. in Geomicrobiology Journal. 2019;36(3):261-270.
doi:10.1080/01490451.2018.1550128 .
Malešević, Milka, Mirković, Nemanja, Lozo, Jelena, Novović, Katarina, Filipić, Brankica, Kojić, Milan, Jovčić, Branko, "Bacterial Diversity among the Sediments of Glacial Lakes in the Western Balkans: Exploring the Impact of Human Population" in Geomicrobiology Journal, 36, no. 3 (2019):261-270,
https://doi.org/10.1080/01490451.2018.1550128 . .
6
4
6

Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials

Miljković, Marija; Jovanović, Sofija; O'Connor, Paula M.; Mirković, Nemanja; Jovčić, Branko; Filipić, Brankica; Dinić, Miroslav; Studholme, David John; Fira, Đorđe; Cotter, Paul D.; Kojić, Milan

(Public Library Science, San Francisco, 2019)

TY  - JOUR
AU  - Miljković, Marija
AU  - Jovanović, Sofija
AU  - O'Connor, Paula M.
AU  - Mirković, Nemanja
AU  - Jovčić, Branko
AU  - Filipić, Brankica
AU  - Dinić, Miroslav
AU  - Studholme, David John
AU  - Fira, Đorđe
AU  - Cotter, Paul D.
AU  - Kojić, Milan
PY  - 2019
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1264
UR  - http://intor.torlakinstitut.com/handle/123456789/702
AB  - Bacteria active against multi-drug resistant pathogens, isolated by direct selection of colonies from clover silage samples, produce zones of inhibition against two Gram-negative (Klebsiella pneumoniae Ni9 and Pseudomonas aeruginosa MMA83) and two Gram-positive (Staphylococcus aureus ATCC25923 and Listeria monocytogenes ATCC19111) pathogens. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 produced the largest zones of inhibition against all four pathogens when grown in LB broth with aeration at 37 degrees C. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 were identified as Brevibacillus laterosporus and pulsed field gel electrophoresis and extracellular protein profiles showed that three different strains (BGSP7, BGSP9 and BGSP11) were isolated. A semi-native SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) gel overlay assay showed that BGSP7 and BGSP9 produce small antimicrobial molecules of about 1.5 kDa, while BGSP11 produces antimicrobial molecules of 1.5 and 6 kDa active against S. aureus ATCC25923. Amino acid analysis of two antimicrobial molecules (1583.73 Da; from BGSP7 and 1556.31 Da; from BGSP11) revealed that they have a similar composition and differ only by virtue of the presence of a methionine which is present only in BGSP11 molecule. Genome sequencing of the three isolates revealed the presence of gene clusters associated with the production of non-ribosomally synthesized peptides (brevibacillin, bogorol, gramicidin S, plipastatin and tyrocin) and bacteriocins (laterosporulin, a lactococcin 972-like bacteriocin, as well as putative linocin M18, sactipeptide, UviB and lantipeptide-like molecules). Ultimately, the purification of a number of antimicrobial molecules from each isolate suggests that they can be considered as potent biocontrol strains that produce an arsenal of antimicrobial molecules active against Gram-positive and Gram-negative multi-resistant pathogens, fungi and insects.
PB  - Public Library Science, San Francisco
T2  - PLoS One
T1  - Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials
IS  - 5
VL  - 14
DO  - 10.1371/journal.pone.0216773
ER  - 
@article{
author = "Miljković, Marija and Jovanović, Sofija and O'Connor, Paula M. and Mirković, Nemanja and Jovčić, Branko and Filipić, Brankica and Dinić, Miroslav and Studholme, David John and Fira, Đorđe and Cotter, Paul D. and Kojić, Milan",
year = "2019",
abstract = "Bacteria active against multi-drug resistant pathogens, isolated by direct selection of colonies from clover silage samples, produce zones of inhibition against two Gram-negative (Klebsiella pneumoniae Ni9 and Pseudomonas aeruginosa MMA83) and two Gram-positive (Staphylococcus aureus ATCC25923 and Listeria monocytogenes ATCC19111) pathogens. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 produced the largest zones of inhibition against all four pathogens when grown in LB broth with aeration at 37 degrees C. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 were identified as Brevibacillus laterosporus and pulsed field gel electrophoresis and extracellular protein profiles showed that three different strains (BGSP7, BGSP9 and BGSP11) were isolated. A semi-native SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) gel overlay assay showed that BGSP7 and BGSP9 produce small antimicrobial molecules of about 1.5 kDa, while BGSP11 produces antimicrobial molecules of 1.5 and 6 kDa active against S. aureus ATCC25923. Amino acid analysis of two antimicrobial molecules (1583.73 Da; from BGSP7 and 1556.31 Da; from BGSP11) revealed that they have a similar composition and differ only by virtue of the presence of a methionine which is present only in BGSP11 molecule. Genome sequencing of the three isolates revealed the presence of gene clusters associated with the production of non-ribosomally synthesized peptides (brevibacillin, bogorol, gramicidin S, plipastatin and tyrocin) and bacteriocins (laterosporulin, a lactococcin 972-like bacteriocin, as well as putative linocin M18, sactipeptide, UviB and lantipeptide-like molecules). Ultimately, the purification of a number of antimicrobial molecules from each isolate suggests that they can be considered as potent biocontrol strains that produce an arsenal of antimicrobial molecules active against Gram-positive and Gram-negative multi-resistant pathogens, fungi and insects.",
publisher = "Public Library Science, San Francisco",
journal = "PLoS One",
title = "Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials",
number = "5",
volume = "14",
doi = "10.1371/journal.pone.0216773"
}
Miljković, M., Jovanović, S., O'Connor, P. M., Mirković, N., Jovčić, B., Filipić, B., Dinić, M., Studholme, D. J., Fira, Đ., Cotter, P. D.,& Kojić, M.. (2019). Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials. in PLoS One
Public Library Science, San Francisco., 14(5).
https://doi.org/10.1371/journal.pone.0216773
Miljković M, Jovanović S, O'Connor PM, Mirković N, Jovčić B, Filipić B, Dinić M, Studholme DJ, Fira Đ, Cotter PD, Kojić M. Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials. in PLoS One. 2019;14(5).
doi:10.1371/journal.pone.0216773 .
Miljković, Marija, Jovanović, Sofija, O'Connor, Paula M., Mirković, Nemanja, Jovčić, Branko, Filipić, Brankica, Dinić, Miroslav, Studholme, David John, Fira, Đorđe, Cotter, Paul D., Kojić, Milan, "Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials" in PLoS One, 14, no. 5 (2019),
https://doi.org/10.1371/journal.pone.0216773 . .
2
27
11
25

Functional Characterization of the Lactolisterin BU Gene Cluster of Lactococcus lactis subsp. lactis BGBU1-4

Miljković, Manja; Lozo, Jelena; Mirković, Nemanja; O'Connor, Paula M.; Malešević, Milka; Jovčić, Branko; Cotter, Paul D.; Kojić, Milan

(Frontiers Media Sa, Lausanne, 2018)

TY  - JOUR
AU  - Miljković, Manja
AU  - Lozo, Jelena
AU  - Mirković, Nemanja
AU  - O'Connor, Paula M.
AU  - Malešević, Milka
AU  - Jovčić, Branko
AU  - Cotter, Paul D.
AU  - Kojić, Milan
PY  - 2018
UR  - https://imagine.imgge.bg.ac.rs/handle/123456789/1124
UR  - http://intor.torlakinstitut.com/handle/123456789/743
AB  - The gene cluster responsible for the production of the aureocin A53-like bacteriocin, lactolisterin BU, is located on plasmid pBU6 in Lactococcus lactis subsp. lactis BGBU1-4. Heterologous expression of pBU6 confirmed that production and limited immunity to lactolisterin BU were provided by the plasmid. Comparative analysis of aureocin A53-like operons revealed that the structural genes shared a low level of identity, while other genes were without homology, indicating a different origin. Subcloning and expression of genes located downstream of the structural gene, IliBU, revealed that the lactolisterin BU cluster consists of four genes: the structural gene IliBU, the abcT gene encoding an ABC transporter, the accL gene encoding an accessory protein and the immL gene which provides limited immunity to lactolisterin BU. Reverse transcription analysis revealed that all genes were transcribed as one polycistronic mRNA. Attempts to split the lactolisterin BU operon, even when both parts were under control of the PlliBU promoter, were unsuccessful indicating that expression of lactolisterin BU is probably precisely regulated at the translational level by translational coupling and is possible only when all genes of the operon are in cis constellation. Two rho-independent transcription terminators were detected in the lactolisterin BU operon: the first in the intergenic region of the IliBU and abcT genes and the second at the end of operon. Deletion of the second transcription terminator did not influence production of the bacteriocin in lactococci.
PB  - Frontiers Media Sa, Lausanne
T2  - Frontiers in Microbiology
T1  - Functional Characterization of the Lactolisterin BU Gene Cluster of Lactococcus lactis subsp. lactis BGBU1-4
VL  - 9
DO  - 10.3389/fmicb.2018.02774
ER  - 
@article{
author = "Miljković, Manja and Lozo, Jelena and Mirković, Nemanja and O'Connor, Paula M. and Malešević, Milka and Jovčić, Branko and Cotter, Paul D. and Kojić, Milan",
year = "2018",
abstract = "The gene cluster responsible for the production of the aureocin A53-like bacteriocin, lactolisterin BU, is located on plasmid pBU6 in Lactococcus lactis subsp. lactis BGBU1-4. Heterologous expression of pBU6 confirmed that production and limited immunity to lactolisterin BU were provided by the plasmid. Comparative analysis of aureocin A53-like operons revealed that the structural genes shared a low level of identity, while other genes were without homology, indicating a different origin. Subcloning and expression of genes located downstream of the structural gene, IliBU, revealed that the lactolisterin BU cluster consists of four genes: the structural gene IliBU, the abcT gene encoding an ABC transporter, the accL gene encoding an accessory protein and the immL gene which provides limited immunity to lactolisterin BU. Reverse transcription analysis revealed that all genes were transcribed as one polycistronic mRNA. Attempts to split the lactolisterin BU operon, even when both parts were under control of the PlliBU promoter, were unsuccessful indicating that expression of lactolisterin BU is probably precisely regulated at the translational level by translational coupling and is possible only when all genes of the operon are in cis constellation. Two rho-independent transcription terminators were detected in the lactolisterin BU operon: the first in the intergenic region of the IliBU and abcT genes and the second at the end of operon. Deletion of the second transcription terminator did not influence production of the bacteriocin in lactococci.",
publisher = "Frontiers Media Sa, Lausanne",
journal = "Frontiers in Microbiology",
title = "Functional Characterization of the Lactolisterin BU Gene Cluster of Lactococcus lactis subsp. lactis BGBU1-4",
volume = "9",
doi = "10.3389/fmicb.2018.02774"
}
Miljković, M., Lozo, J., Mirković, N., O'Connor, P. M., Malešević, M., Jovčić, B., Cotter, P. D.,& Kojić, M.. (2018). Functional Characterization of the Lactolisterin BU Gene Cluster of Lactococcus lactis subsp. lactis BGBU1-4. in Frontiers in Microbiology
Frontiers Media Sa, Lausanne., 9.
https://doi.org/10.3389/fmicb.2018.02774
Miljković M, Lozo J, Mirković N, O'Connor PM, Malešević M, Jovčić B, Cotter PD, Kojić M. Functional Characterization of the Lactolisterin BU Gene Cluster of Lactococcus lactis subsp. lactis BGBU1-4. in Frontiers in Microbiology. 2018;9.
doi:10.3389/fmicb.2018.02774 .
Miljković, Manja, Lozo, Jelena, Mirković, Nemanja, O'Connor, Paula M., Malešević, Milka, Jovčić, Branko, Cotter, Paul D., Kojić, Milan, "Functional Characterization of the Lactolisterin BU Gene Cluster of Lactococcus lactis subsp. lactis BGBU1-4" in Frontiers in Microbiology, 9 (2018),
https://doi.org/10.3389/fmicb.2018.02774 . .
2
9
1
9