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Abstract

Ocular chlamydial infections with the ocular serovars A, B, Ba, and C of Chlamydia trachomatis represent the world’s leading
cause of infectious blindness. Carrageenans are naturally occurring, sulfated polysaccharides generally considered safe for food
and topical applications. Carrageenans can inhibit infection caused by a variety of viruses and bacteria. To investigate whether
iota-carrageenan (I-C) isolated from the red alga Chondrus crispus could prevent ocular chlamydial infection, we assessed if
targeted treatment of the conjunctival mucosa with I-C affects chlamydial attachment, entry, and replication in the host cell.
Immortalized human conjunctival epithelial cells were treated with I-C prior to C. trachomatis infection and analyzed by flow
cytometry and immunofluorescence microscopy. In vivo effects were evaluated in an ocular guinea pig inclusion conjunctivitis
model. Ocular pathology was graded daily, and chlamydial clearance was investigated. Our study showed that I-C reduces the
infectivity of C. trachomatis in vitro. In vivo results showed a slight reduced ocular pathology and significantly less shedding of
infectious elementary bodies by infected animals. Our results indicate that I-C could be a promising agent to reduce the
transmission of ocular chlamydial infection and opens perspectives to develop prophylactic approaches to block C. trachomatis
entry into the host cell.
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Introduction

Ocular (Lietman et al. 1998) and genital (Norman 2002) chla-
mydial infections are common worldwide (146 million cases/
year) (ECDC 2015). Repeated infections with Chlamydia
trachomatis ocular serovars A, B, Ba, and C trigger fibrotic pro-
cesses in the affected ocular tissues leading to trichiasis, corneal
opacity, and in further progression to complete loss of sight
(Mariotti et al. 2009). Apart from reducing the quality of life,
ocular chlamydial infections can lead to a sight-threatening com-
plication called trachoma. Trachoma is considered a neglected
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tropical disease and is the world’s leading infectious cause of
preventable blindness (Taylor et al. 2014). Currently, control in
the endemic populations is achieved through mass drug adminis-
tration (Frick et al. 2001) and implementation of the SAFE strat-
egy (S stands for “surgery” for trachomatous trichiasis, A stands
for “antibiotic” treatment, F'stands for “facial” cleanliness, and £
stands for “environmental” improvement such as general com-
munity hygiene, adequate water supply, and construction of san-
itary facilities) (WHO 2014).

To more efficiently combat the spread of Ct in these rural
poverty areas, novel methods for treatment and prevention of
C. trachomatis infection are needed. There exist various studies
exploring the potential of natural products for developing new
anti-chlamydial treatment modalities (Brown et al. 2016).
Polyphenolic (Daglia 2012), lipidic (Bergsson et al. 1998), pro-
teinaceous compounds (Yasin et al. 1996), and polyherbal for-
mulations have demonstrated significant anti-chlamydial activ-
ity (Talwar et al. 1995). Overall, natural products show signif-
icant potential in treating chlamydial infections and the devel-
opment of novel drugs based on natural products may help in
the global management of Chlamydiae-related infections.
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Carrageenans are naturally occurring anionic sulfated poly-
saccharides (SPs), which are present in a number of seaweeds of
the class Rhodophyceae, such as Chondrus, Gigartina, Hypnea,
and Eucheuma (Lahaye 2001; Necas and Bartosikova 2013).
They have an excellent and well-documented safety profile for
long-term use, since they have been widely used in the food,
pharmaceutical, and cosmetic industry as additives, thickeners,
and emulsifiers. The Food and Drug Administration has listed
carrageenan compounds as “generally recognized as safe”
(GRAS) in 1973 (FDA SCOGS (Select Committec on GRAS
Substances) n.d.). Carrageenans consist of alternate units of D-
galactose and 3,6-anhydro-galactose, both sulfated and
nonsulfated, joined by «-1,3 and (3-1,4-glycosidic linkage
(Necas and Bartosikova 2013). Depending on the allocation of
the sulfate groups on the main structures, carrageenan is
classified into various types (A, K, L, €, W), all containing
22 to 35% sulfate groups, of which A, -, and ¢-carra-
geenans are widely used in the food industry (Vera et al.
2011; Necas and Bartosikova 2013).

Different types of carrageenans have been found to be ac-
tive against a variety of viruses, including human papilloma-
virus (HPV) (Buck et al. 2006; Roberts et al. 2007,
Levendosky et al. 2015), herpes simplex virus (Carlucci
et al. 1999), rhinovirus (Grassauer et al. 2008), influenza
(Leibbrandt et al. 2010), metapneumovirus (Klimyte et al.
2016), and rabies (Luo et al. 2015). Antiviral potential against
human immunodeficiency virus was already described two
decades ago (Gonzalez et al. 1987) and has been reviewed
recently (Damonte et al. 2004). Although it has been proven
that carrageenans show strong antiviral properties, the exact
mechanisms of action and structural determinants for these
compounds are not fully elucidated. It has been hypothesized
that carrageenans exert their antiviral activity by direct inter-
action with virus particles at an early stage of viral infection
(Gonzalez et al. 1987). Initial attachment of the virus to human
cells is mediated by the interactions between the virion and a
type of cell surface glycosaminoglycan (GAG) heparan sul-
fate (Buck et al. 2006). Carrageenans closely resemble hepa-
ran sulfate and could interact directly with the viral particles,
preventing attachment to the respective receptors on the cell
surface. It has also been shown that iofa-carrageenan (I-C)
possesses antiviral activity not only due to direct interaction
with influenza A virus but also due to coating of cellular struc-
tures, hindering receptor binding sites (Buck et al. 2006;
Leibbrandt et al. 2010).

The effects of carrageenans also have been described in the
context of bacterial infections. The antimicrobial action of I-C
on food-borne pathogenic bacteria has been described and
shown that the inhibitory effect of carrageenans was not bac-
tericidal but bacteriostatic (Yamashita 2001). Moreover, the
removal of sulfate residues eliminated the bacteriostatic effect
of I-C, suggesting that the sulfate residue(s) in carrageenan
play an essential role in this mechanism.
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Studies investigating the effects of SPs to block chla-
mydial infection are sparse. It has been shown that exoge-
nous heparin and heparan sulfate inhibit chlamydial infec-
tion (Zhang and Stephens 1992). Although this study used
C. trachomatis lymphogranuloma venereum serovar L2 as
their model organism, their results might be translatable to
ocular strains since it was shown that for both serovariants
heparan sulfate-like-mediated interactions between C.
trachomatis and eukaryotic cells are critical mediators of
infectivity (Chen and Stephens 1994). Moreover, the abil-
ity of different SPs to inhibit the infection of cervix derived
human epithelial cells ME180 with C. trachomatis serovar
E was studied and included different types of carrageenan
and GAGs (e.g., heparin, heparan sulfate, and hyaluronic
acid). This in vitro study was important as it demonstrated
that I-C and other types of SPs block infection of ME180
with C. trachomatis serovar E by preventing bacterial at-
tachment to the host cell (Zaretzky et al. 1995). This is in
line with numerous reports showing that the entry of
Chlamydia into the host cell is dependent on elementary
bodies (EBs) interactions with GAGs exposed on the sur-
face of the host cells (Chen and Stephens 1994; Moelleken
and Hegemann 2008).

It is well known that a successful prevention of an
infection depends on how efficient a certain product/
drug is in preventing the entry of the infectious agent
into the host organism. For chlamydial infections, this
would mean inhibiting/preventing the infection of ocular
and genital mucosal epithelium. Most importantly, even
before taking any product/drug into consideration for
treatment of chlamydial infections, their safety profiles
on mucosal surfaces must be established. Recently, it
has been shown that carrageenans, including I-C, were
not cytotoxic and did not induce proinflammatory cyto-
kines in epithelial cell lines HT-29 and HCT-8 (McKim
Jr. et al. 2016). Moreover, in studies investigating possi-
bilities of using carrageenans as microbicides, it has been
shown that a topical application of carrageenan is safe
for mucosal epithelium (Coggins et al. 2000; Grassauer
et al. 2008; Eccles et al. 2015).

In the present study we used (i) an in vitro infection model
highly resembling the human ocular surface: immortalized
human conjunctival epithelial (HCjJE) cells infected with C.
trachomatis ocular serovar B (CtB) (Stein et al. 2013; Rahn
et al. 2016) and (ii) an in vivo guinea pig inclusion conjunc-
tivitis infection model, which uses Chlamydia caviae (GPIC),
a natural pathogen of the guinea pigs, as the infectious agent
(Rank and Whittum-Hudson 1994; Belij-Rammerstorfer et al.
2016; Filipovic et al. 2017) to investigate if targeted treatment
of the ocular conjunctival mucosa with [-C derived from
Chondrus crispus can block chlamydial attachment, entry,
and by these means also bacterial replication in the ocular
epithelial cells.
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Material and methods
Chlamydial strains

Chlamydia trachomatis ocular serovar B (CtB) (ATCC VR-
573) and Chlamydia caviae (GPIC) (kindly provided by Prof.
Roger G. Rank) were propagated in McCoy cells (ATCC
CRL-1696) according to standard procedures (Caldwell
et al. 1981). Harvested stocks were centrifuged at 200 x g to
pellet cellular debris, resuspended in sucrose-phosphate-
glutamate buffer (SPG) containing 0.01 M sodium phosphate
(pH 7.2), 0.25 M sucrose, and 5 mM L-glutamic acid.

Cell culture

HCJE cells, kindly provided by Prof. Ilene Gipson (Schepens
Eye Research Institute, Harvard Medical School, Boston),
were maintained in keratinocyte serum-free medium supple-
mented with bovine pituitary extract, 0.2 ng mL~' EGF and
1% penicillin/streptomycin (Life Technologies, UK) at 37 °C/
5% CO, and 95% humidity. The medium was changed every
second day, and cells were passaged at 70% confluence.

In vitro infection assay

For in vitro infection assays, HCJE cells were maintained in
keratinocyte serum-free medium (Life Technologies, UK) at
37 °C/5% CO, and 95% humidity. The medium was changed
every second day, and the cells were passaged at 70% conflu-
ence. Cells were harvested by trypsinization (0.05% Trypsin/
0.02% EDTA in PBS, GE Healthcare) and seeded at a density
of 150.000 cells per well in 24-well plates (Greiner Bio-One,
Austria). An aqueous solution containing 2.4 mg mL ™' I-C
(0.24% wlv; 1-C derived from Chondrus crispus; FMC
Biopolymers, USA) and 36.4 mg mL ™' mannitol (Sigma
Aldrich, Germany) was formulated to test the antimicrobial
activity against CtB. The dose was chosen according to the
results of a preliminary experiment—2.4 mg mL ™', which was
the concentration of an obtained liquid solution, was the most
efficient dose in inhibiting chlamydial infection (serial dilu-
tions 2.4, 1.2, 0.6, and 0.3 mg mLﬁl) showed lower dose-
dependent inhibiting effect and all doses did not exhibit any
cytotoxicity on HCJE cells. The I-C solution was filtered
through a 0.22-uM (Sarstedt, Germany) sterile filter and
stored at 4 °C. The unbuffered I-C solution had a pH between
6.8 and 7.4 and an osmolarity between 210 and
220 mOsm kg '. A sterile aqueous solution containing
36.4 mg mL ™' mannitol served as a placebo control.
Confluent cultures of HCJE cells were treated with I-C
solution in the given concentration and subsequently infected
with 1 x 10* inclusion-forming unit (IFU) CtB, resuspended
in SPG, per well. Placebo-treated cells and cells without any
pre-treatment served as controls. A second group of mock-

infected cells, treated only with either I-C or placebo, were
assessed in the same manner to evaluate possible cytopathic
effects of the formulations by phase-contrast microscopy.
HCJE cells were incubated for 2 h at 37 °C to ensure CtB
attachment. After 2 h, the medium was changed to standard
growth medium without antibiotics and cells were incubated
for 48 h at 37 °C/5% CO, and 95% humidity. Cells were fixed
with ice-cold methanol for 20 min at — 20 °C, air-dried, and
stained with an anti-Chlamydia LPS-FITC labeled antibody
(Clone B410F, Pierce Biotechnology, USA) diluted 1:20 in
PBS for 30 min at 37 °C. CtB IFUs were counted on a Zeiss
AxioObserver microscope using Tissue FaxSi Software
(Tissuegnostics, Austria) for acquisition. HCJE cells were
counterstained with DAPL Inclusion size was measured in
20 high power fields per sample. All experiments were repeat-
ed three times and were performed in triplicates.

Adhesion assay

To assess changes in the efficiency of attachment of CtB ele-
mentary bodies (EBs) to the cell surface of I-C-treated HCJE
cells, a flow cytometric adhesion assay with carboxyfluores-
cein succinimidyl ester (CFSE) labeled CtB EBs was per-
formed according to a previous study (Molleken et al. 2010).
Briefly, CtB EBs resuspended in SPG were labeled with
20 pmol L ! CSFE (ebioscience, Vienna Austria) for 90 min
at room temperature (RT) as previously described (Schnitger
et al. 2007). EBs were washed three times with PBS contain-
ing 1% BSA to remove excess CSFE. Confluent monolayers
of HCJE cells (150.000 cells per well) were treated with
2.4 mg mL™" I-C or placebo solution for 5 min at 37 °C/5%
CO; and 95% humidity. After 5 min of incubation of HCJE
cells with I-C, labeled CtB EBs at a MOI (multiplicity of
infection) of 10 were added into wells and further incubated
for 1 h at 37 °C/ 5% CO, and 95% humidity. Cells were then
washed with PBS, harvested by trypsinization, and fixed with
2% paraformaldehyde in PBS for 15 min at RT. Fluorescence
of cells infected with CFSE-labeled CtB was assessed with a
FACS Calibur flow cytometer (BD Biosciences, Germany).
The experiment was repeated twice and both times was per-
formed in triplicates.

In vivo infection

All animal experiments were approved by the Torlak Institute
and conformed to the Serbian laws and European regulations
on animal welfare (Approval No. 323-07-01577/2016-05/12).
All animals were handled in strict accordance with good ani-
mal practice as defined by the Serbian code of practice (pub-
lished in Sluzbeni Glasnik No. 41/9) for the care and use of
animals for scientific purposes, the Guide for the Care and Use
of Laboratory Animals of the Torlak Institute (2133/1, 21. 04.
2011), a Basel declaration that is committed to the 3R
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principle (replace, reduce, refine). Every effort was made to
minimize animal suffering. Any animals found to be requiring
treatment were given appropriate veterinary care. We did not
observe any unexpected deaths of animals during this study.

In vivo efficacy of I-C treatment was evaluated on guinea
pigs Hartley Strain (300-350 g) anesthetized with a mixture of
ketamine (30 mg kg ') and xylazine (2 mg kg ") applied in-
tramuscularly prior any manipulation. Two sets of in vivo ex-
periments were done. In the first experiment, we evaluated the
impact of local I-C application prior GPIC inoculation on the
course of chlamydial infection (pre-treatment). Guinea pigs
were treated either with 25 uL per eye of I-C (2.4 mg mL™")
or with appropriate placebo solution 2 h before the infection
with 1 x 10* IFU of GPIC. In the second experiment, we eval-
uated the impact of local I-C application during the acute
phase of infection (treatment). Guinea pigs infected with 1 x
10* IFU of GPIC were treated for 7 days, daily, either with
25 uL per eye of I-C (2.4 mg mL™") or with appropriate
placebo solution starting from day 3 post-infection. The day
of GPIC inoculation was considered as day 0 in both experi-
ments. An experienced ophthalmologist who was blinded to
the experimental groups observed and scored daily the eyes of
guinea pigs in a protection assay (Rank et al. 1995). In brief,
the palpebral and the bulbar conjunctivae were evaluated for
erythema, edema, and exudation in each animal. Each obser-
vation was classified into five categories: (0.5) trace patholog-
ic response, (1) slight erythema or edema of either the palpe-
bral or the bulbar conjunctiva, (2) definite erythema or edema
of either the palpebral or the bulbar conjunctiva, (3) definite
erythema or edema of both the palpebral and the bulbar con-
junctivas, or (4) definite erythema or edema of both the pal-
pebral and the bulbar conjunctivas plus the presence of
exudate.

Determination of GPIC IFUs from conjunctival swabs

For the quantification of GPIC EBs, conjunctival swab sam-
ples were collected from guinea pigs while under ketamine/
xylazine anesthesia before and 4, 7, 14, and 21 days post-
infection. Darcon swabs were used to swab the palpebral
and the bulbar conjunctiva and placed in Copan Universal
Transport Medium (UTM-RT) System (Copan, Italy). IFUs
were determined by inoculation of the obtained swab material
onto confluent cultures of McCoy cells (ATCC CRL-1696).
Centrifugation at 200 x g for 1 h was carried out to ensure
attachment of EBs. After incubation for 24 h at 37 °C/5% CO,
and 95% humidity in the presence of 1 mg mL™'
cyclohexamide (Sigma Aldrich) cells were fixed in ice-cold
methanol and stained with a FITC-conjugated monoclonal
antibody against Chlamydia LPS (1:20 in PBS, Clone
B410F, Pierce Biotechnology, USA). IFUs were counted
using a epifluorescence microscope (Zeiss AxioObserver,
Zeiss, Germany).
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Statistical analysis

To assess statistically significant differences between the treat-
ment groups, a two-way ANOVA followed by Bonferroni
multiple comparisons test was used. The level of significance
was set at P < 0.05. All statistical analyses were performed by
the software: IBM SPSS Statistics 20.

Results

I-C reduced the number of detectable inclusions
in vitro

The analyses of HCJE cells infected in vitro with CtB without
any pre-treatment or upon I-C and placebo treatment
encompassed the evaluation of CtB attachment, the counting
of CtB IFUs, and the evaluation of inclusions’ size.

Flow cytometric analyses of HCjE cells infected with
CFSE-labeled CtB EBs revealed that I-C inhibits CtB attach-
ment to the HCJE cells (Fig. 1). HCJE cells infected with
CFSE-labeled CtB, either without pre-treatment or upon pla-
cebo treatment were CtB positive (CtB+) (99.4+0.1% and
99.6£0.1%) (Fig. 2a, b). Analysis of viable HCJE cells ex-
posed to CFSE-labeled CtB in the presence of I-C revealed
that I-C significantly impaired CtB attachment to HCJE cells
because 65.1+2.8% of cells were CtB+ (Fig. 2a; P <0.001
compared either to HCJE cells infected with CFSE-labeled
CtB without any pre-treatment or upon placebo treatment).
Besides, I-C treatment resulted in a significant reduction of
the CFSE signal: the mean fluorescence intensity (MFI) of
CtB+ HCJE cells pre-treated with I-C was 59.23 £+ 1.34. MFI
of HCJE cells pre-treated with I-C was significantly lower in
comparison with MFIs recorded for HCJE cells treated either
with placebo (351.67 £2.85, P<0.001) or without any treat-
ment (355.33+£9.17, P<0.001) (Fig. 2c, d).

The counting of CtB IFUs in HCJE cells exposed to spe-
cific treatments prior in vitro CtB infection revealed signifi-
cantly (P <0.001) lower numbers of CtB IFUs for [-C-treated
HCJE cells (32611 IFU well ') in comparison with CtB-
infected placebo-treated HCJE cells (2403 +89 IFU/well)
(Fig. 3a, b). Moreover, inclusions observed upon in vitro
CtB infection in [-C-treated HCJE cells (5.35 + 0.38 wm) were
significantly smaller (P <0.001) in comparison to those in
placebo-treated HCGJE (15.72 £0.63 pum; Fig. 3a, c).

The I-C-treated guinea pigs showed less severe
symptoms of ocular chlamydial infection in vivo

Preliminary performed experiments showed that topical treat-
ment with I-C in guinea pigs was well tolerated, as any signs
of irritation on the ocular surface were not marked during
daily follow-ups.
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Fig. 1 Flow cytometric analyses of HCJE cells infected in vitro with
CFSE-labeled CtB in the presence of I-C (a) or placebo (b) solution.
Three independent samples per treatment were analyzed and representa-
tive histograms are presented. Each sample consisted of 1 x 10® HCJE
cells exposed to CtB at MOI of 10. CtB-infected HCJE, which were not
exposed to either I-C or placebo (blue line), non-infected HCJE cells (red

In comparison with placebo treatment, a single local I-C
administration before GPIC ocular infection did not signifi-
cantly alter the infection course. During the post-infection
period, pathology scores were slightly lower in the I-C pre-
treated group compared to the animals that received placebo
treatment, although statistically significant differences in inten-
sity of pathology were not marked at any time-point (Fig. 4a).
Furthermore, the peak of infection was reached on day 4 post-
infection in both groups. The I-C-treated group showed a slight-
ly delayed onset of pathology and less severe symptoms of
infection up to day 16. By reaching day 21, all [-C-treated
guinea pigs showed no more signs of any pathological events,
whereas traces of inflammation were seen within the placebo-
treated group. Analysis of changes in chlamydial load during
the post-infection period (Fig. 4b) revealed significantly lower
absolute numbers of GPIC EBs in I-C-treated guinea pigs on
day 4 (P <0.001) and on day 7 post-infection (P < 0.001) com-
pared to the corresponding placebo-treated animals. On day 14
post-infection, the number of GPIC EBs was also lower, but not
statistically significant, in I-C-treated guinea pigs (P> 0.05).
No GPIC IFUs could be detected in both groups by day 21
indicating complete clearance of chlamydial infection.

Multiple local I-C applications during the acute phase of
ocular GPIC infection exerted more pronounced impact on in-
fection intensity and pathologic response (Fig. 5). A significant
reduction in GPIC infectious load due to I-C treatment was
accompanied by the reduction in severity of GPIC-induced lo-
cal inflammation. Pathology scores were lower (P< 0.05 on
days 5, 8, 11, and 13 post-infection) in the I-C pre-treated group
in comparison with the animals receiving placebo treatment
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line) and non-infected HCJE incubated either with I-C or with placebo
solution (green line) were controls. All control cells were incubated under
the same conditions (1 h at 37 °C/5% CO, and 95% humidity) and treated
in the same manner as HCJE cells infected with CtB in the presence of [-C
or placebo (orange line). The gate containing CFSE+ cells is indicated on
the histograms (black line)

(Fig. 5a). The I-C treatment did not shorten the period needed
for complete clearance of the infection. Analysis of changes in
chlamydial load during the post-infection period revealed sig-
nificantly lower absolute numbers of GPIC EBs in I-C-treated
guinea pigs on day 4 (P < 0.001), day 7 (P < 0.001), and day 14
(P <0.005) post-infection in comparison with the correspond-
ing placebo-treated animals (Fig. Sb).

Discussion

The results of the presented study show that I-C effectively
reduces CtB infectivity by blocking chlamydial attachment to
the epithelial host cells and might be a promising and afford-
able therapeutic agent against ocular chlamydial infections,
especially for endemic trachoma areas.

The effects of a specific I-C treatment on the ocular chla-
mydial infection were assessed in vitro in HCJE cells and
in vivo by using a model of inclusion conjunctivitis in guinea
pigs. HCJE cells are considered a valuable and relevant model
system for various kinds of ocular surface-targeted research.
These cells are derived from healthy human conjunctiva and
immortalized by abrogation of p16 control and p53 function
before immortalization by expression of human telomerase
reverse transcriptase (Gipson et al. 2003). Compared to cervi-
cal ME180 cells, which were originally isolated from a highly
invasive cervical squamous cell carcinoma, HCJE cells are a
more convenient system for testing due to their functional
characteristics including similar mucin gene expression as na-
tive conjunctival cells (Gipson et al. 2003). An additional

@ Springer
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Fig. 2 Percentage of CtB+ HCjE cells within the total population of
HCJE infected in vitro with CFSE-labeled CtB in the presence of I-C
(a) and placebo (b) solution and the MFI of CFSE signal of HCJE cells
exposed to treatments indicated below the plots (¢, d). The gating of
CFSE+ HCJE cells is indicated in Fig. 1 Three independent samples per

limitation of the study on ME180 cells was that they were
reported to contain HPV DNA with greater homology to
HPV-68 than HPV-18, which might speak against using these
cells in infection experiments. Furthermore, the guinea pig
model of inclusion conjunctivitis caused by GPIC we used
in this study is an important animal model in the field of ocular
chlamydial infection as the structural and functional organiza-
tion of lymphoid tissue underlining the conjunctiva of guinea
pigs highly resembles the one of the human ocular region
(Rank 2007). This is the main advantage of a guinea pig in-
clusion conjunctivitis model over the other models of ocular
infection of rodents.

Our results show that I-C is able to reduce C. trachomatis
infection in HCJE cells, which is in line with the effect of I-C
seen for C. trachomatis serovar E in genital ME180 cells
(Zaretzky et al. 1995). The reduced infectivity of the C.
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treatment were analyzed and results are presented as a mean value = SE.
Statistical significance between specific treatments is determined by one-
way ANOVA followed by Bonferroni test (* p < 0.05, ** p < 0.005, ***
p<0.001). Compared groups are indicated by arrows

trachomatis EBs in I-C-treated cells might be explained by
the obstruction of their attachment to the I-C-treated host cells.
It has been proposed that the inhibitory effect of SPs against C.
trachomatis infection is non-specific and mediated by the
strong negative charge of the SPs resulting in prevention of
adherence of C. trachomatis to the host cell by charge repul-
sion (Zaretzky et al. 1995). The negative influence of I-C on
EB attachment to the host cell could further explain the lower
number of chlamydial IFUs and/or the smaller size of inclu-
sions upon I-C treatment of host cells we found in our study.
Our finding that inclusions in I-C-treated cells are smaller
compared to untreated CtB-infected cells suggests that there
might be additional mechanisms involved that contribute to
the antimicrobial effect of I-C.

Bacterial attachment to mucosal epithelial surfaces is the
first step in the establishment of an infection and the
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Fig. 3 Microscopic analysis of HCJE cells infected with CtB in the
presence of I-C and placebo solution (a). HCJE cells were seeded at a
density of 150.000 cells/well, infected with 1 x 10* IFU of CtB, incubated
in appropriate medium supplemented with I-C or placebo for 48 h and
then collected for analyses. Representative images are shown. The

specificity of the pathogen—host cell interaction is determined
by bacterial surface proteins (adhesins) and their receptors on
the host cell surface. GAG structures on the mammalian cell
surface play an important role in interactions with many mi-
crobial pathogens and are recognized also by Chlamydia
(Zhang and Stephens 1992; Chen and Stephens 1994;
Moelleken and Hegemann 2008). It has also been demonstrat-
ed that a chlamydial adhesin, the outer membrane protein B
(OmceB), from C. trachomatis as well as from GPIC, interacts
with GAGs on the epithelial host cell surface (Stephens et al.
2001; Fadel and Eley 2007; Moelleken and Hegemann 2008).
Interactions of carrageenans with host cell GAGs have been
investigated and showed reduced sulfatase activity and
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number (b) and the size (¢) of CtB inclusions are determined. CtB inclu-
sions are identified using FITC-labeled anti-Chlamydia LPS antibody
(green dots). HCJE cells were counterstained with DAPI (blue). The sig-
nificance of the recorded differences is determined by ¢ test for indepen-
dent groups (***P < 0.001)

redistribution of the cellular GAGs on the host cell surface
with potential consequences for cell structure and function
(Yang et al. 2012). Considering these findings, it can be hy-
pothesized that I-C in our experiment competitively inhibits
the interaction with GAGs on the epithelial cell surface or
modulate their availability, which leads to reduced attachment
and subsequent infection of the host cells.

Antiviral effects of I-C were investigated in animal
models (Fernandez-Romero et al. 2012). It has been shown
that I-C could effectively block HPV infection of HeLa and
HacCat cells by inhibiting the interaction of the viral capsid
with heparin sulfate proteoglycans at the host cell surface
as well as that [-C and kappa-carrageenan are more
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Fig. 4 Ocular pathology scores (a) and C. caviae load (b) in guinea pigs
infected with a single ocular instillation of C. caviae (1 x 10* IFU) 2 h
after I-C or placebo treatment. The start of infection is considered as day 0
and the timing of I-C or placebo pre-treatment is indicated by an arrow.
The intensity of infection-induced inflammation is scored daily, while

efficient in blocking HPV infection than other types of
carrageenan (Buck et al. 2006). Differential efficiency of
carrageenan to block HPV infection has also been reported
showing a protective effect against HPV18 and HPV31
infections, but not against HPV16 and HPV45 (Cruz and
Meyers 2013). The efficacy of carrageenan inhibition of
dengue virus infection varied depending on the serotype

C. caviae load is determined at previously selected control time-points
(days 0, 4, 7, 14, and 21 post-infection). Statistical significance of the
observed differences was evaluated using the two-way ANOVA test
followed by Bonferroni test (compared groups indicated by arrows;
*P <0.05, ##P < 0.005, **#P <0.001)

tested (Talarico and Damonte 2016). Strain-specific effica-
cy of carrageenans depends on their properties but also on
the characteristics of the infectious agent. It has been
shown that the degree of sulfation has a major impact on
the antiviral activity of SPs and that a specific positioning
of sulfates might be important for the antiviral activity
(Ghosh et al. 2009).
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Fig. 5 Ocular pathology scores (a) and C. caviae load (b) in guinea pigs
infected with a single ocular instillation of C. caviae (1 x 10* IFU) as well
as guinea pigs treated during the acute phase of infection with I-C or
placebo solution. The start of infection is considered as day O and the
timing of I-C or placebo treatments (from day 3 to day 9 post-infection)
are indicated with arrows. The intensity of infection-induced
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inflammation is scored daily, while C. caviae load is determined at pre-
viously selected control time-points (days 0, 4, 7, 14, and 21 post-infec-
tion). Statistical significance of the observed differences was evaluated
using the two-way ANOVA test followed by Bonferroni test (compared
groups indicated by arrows; *P <0.05, **P < 0.005, and ***P < 0.001)
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The in vitro obtained data on SPs as anti-chlamydial sub-
stances are in line with the strain-specific antiviral activity of
SPs. It is demonstrated that the efficacy of SPs, including
carrageenans, in inhibition of in vitro chlamydial infection
depends on the Chlamydia serovar used (Zaretzky et al.
1995; Taraktchoglou et al. 2001).

Despite the existence of data implying a potential ben-
eficial impact of SPs on the course of chlamydial infec-
tion, there is no clear evidence of a protective effect of
SPs against chlamydial infection in vivo. Burillo et al.
analyzed the protective capacity of SPs against chlamyd-
ial infections in a genital mouse model and did not find
any protective effect (Burillo et al. 1998). Our results
imply that topical I-C treatment could exert beneficial
effects against ocular chlamydial infection but variation
in dosage or application schedule must be carefully con-
sidered. Our results also imply that prolonged I-C appli-
cation is required for a beneficial effect. Single I-C ap-
plication 2 h before chlamydial infection has not resulted
in a significant reduction in pathology intensity in com-
parison with placebo-treated animals. On the other hand,
its daily application resulted in a significant lessening of
pathology severity even though the treatment was started
only at the acute phase of infection (day 3 post-infection)
and not immediately after animals were infected with
Chlamydia. This observation, together with our results of
significantly less shedding of Chlamydia in I-C-treated an-
imals compared with placebo-treated groups, additionally
support the hypothesis that the anti-chlamydial activity of
I-C might be attributed to the prevention of the initial C.
trachomatis contact with the epithelial host cells.
Furthermore, this finding could also implicate that I-C
per se might exert a positive local immunomodulatory ef-
fect, which might consecutively contribute toward the in-
flammation lessening and the infection resolution.

In conclusion, our findings show that the application of
I-C reduces CtB infectivity in vitro and shedding of chla-
mydial EBs (GPIC) in vivo. Prolonged application of I-C
might be needed for a significant improvement of the
clinical picture. The reduction of shedding of infectious
EBs is also of utter importance as it could contribute to a
less effective transmission of chlamydial infection.
Further studies, with the emphasis on the impact of I-C
application schedule on the kinetics of a chlamydial in-
fection are required to evaluate the full potential of I-C as
a prophylactic and therapeutic treatment of ocular chla-
mydial infection.
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